Metamath Proof Explorer


Theorem metdmdm

Description: Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion metdmdm ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 )

Proof

Step Hyp Ref Expression
1 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
2 xmetdmdm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 )
3 1 2 syl ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 )