Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
2 |
1
|
metdsf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
6 |
3 5
|
ffvelrnd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
7 |
|
eliccxr |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
9 |
8
|
xrleidd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ) |
10 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
11 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝑆 ⊆ 𝑋 ) |
12 |
1
|
metdsge |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
13 |
10 11 5 8 12
|
syl31anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
14 |
9 13
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑆 ) |
16 |
10
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
17 |
5
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑋 ) |
18 |
8
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
19 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝐴 ) ) |
20 |
|
xblcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
21 |
16 17 18 19 20
|
syl112anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
22 |
|
inelcm |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ≠ ∅ ) |
23 |
15 21 22
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ≠ ∅ ) |
24 |
23
|
ex |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ≠ ∅ ) ) |
25 |
24
|
necon2bd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) ) |
26 |
14 25
|
mpd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) |
27 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐴 ) ) ) |
28 |
27
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
29 |
6 28
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
30 |
|
0xr |
⊢ 0 ∈ ℝ* |
31 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
32 |
30 8 31
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
33 |
29 32
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
34 |
33
|
ord |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( ¬ 0 < ( 𝐹 ‘ 𝐴 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
35 |
26 34
|
mpd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) |
36 |
35
|
eqcomd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |