| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | metdscn.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 |  | metdscn.c | ⊢ 𝐶  =  ( dist ‘ ℝ*𝑠 ) | 
						
							| 4 |  | metdscn.k | ⊢ 𝐾  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 5 | 1 | metdsf | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 6 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 7 |  | fss | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  ( 0 [,] +∞ )  ⊆  ℝ* )  →  𝐹 : 𝑋 ⟶ ℝ* ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ℝ* ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  →  𝑟  ∈  ℝ+ ) | 
						
							| 10 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  𝐹 : 𝑋 ⟶ ℝ* ) | 
						
							| 11 |  | simplrl | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 12 | 10 11 | ffvelcdmd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ* ) | 
						
							| 13 |  | simprl | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  𝑤  ∈  𝑋 ) | 
						
							| 14 | 10 13 | ffvelcdmd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ* ) | 
						
							| 15 | 3 | xrsdsval | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑤 )  ∈  ℝ* )  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  =  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  =  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 17 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 |  | simpllr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  𝑆  ⊆  𝑋 ) | 
						
							| 19 |  | simplrr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  𝑟  ∈  ℝ+ ) | 
						
							| 20 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑤  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑤 𝐷 𝑧 )  =  ( 𝑧 𝐷 𝑤 ) ) | 
						
							| 21 | 17 13 11 20 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( 𝑤 𝐷 𝑧 )  =  ( 𝑧 𝐷 𝑤 ) ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) | 
						
							| 23 | 21 22 | eqbrtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( 𝑤 𝐷 𝑧 )  <  𝑟 ) | 
						
							| 24 | 1 2 3 4 17 18 13 11 19 23 | metdscnlem | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) )  <  𝑟 ) | 
						
							| 25 | 1 2 3 4 17 18 11 13 19 22 | metdscnlem | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) | 
						
							| 26 |  | breq1 | ⊢ ( ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) )  =  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) )  →  ( ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) )  <  𝑟  ↔  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) )  <  𝑟 ) ) | 
						
							| 27 |  | breq1 | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) )  =  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) )  →  ( ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) )  <  𝑟  ↔  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) )  <  𝑟 ) ) | 
						
							| 28 | 26 27 | ifboth | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) )  <  𝑟  ∧  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 )  →  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) )  <  𝑟 ) | 
						
							| 29 | 24 25 28 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  if ( ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ,  ( ( 𝐹 ‘ 𝑤 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑧 ) ) ,  ( ( 𝐹 ‘ 𝑧 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝑤 ) ) )  <  𝑟 ) | 
						
							| 30 | 16 29 | eqbrtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) )  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) | 
						
							| 31 | 30 | expr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝑧 𝐷 𝑤 )  <  𝑟  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  →  ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑟  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) | 
						
							| 33 |  | breq2 | ⊢ ( 𝑠  =  𝑟  →  ( ( 𝑧 𝐷 𝑤 )  <  𝑠  ↔  ( 𝑧 𝐷 𝑤 )  <  𝑟 ) ) | 
						
							| 34 | 33 | rspceaimv | ⊢ ( ( 𝑟  ∈  ℝ+  ∧  ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑟  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) )  →  ∃ 𝑠  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑠  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) | 
						
							| 35 | 9 32 34 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑟  ∈  ℝ+ ) )  →  ∃ 𝑠  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑠  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) | 
						
							| 36 | 35 | ralrimivva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ∀ 𝑧  ∈  𝑋 ∀ 𝑟  ∈  ℝ+ ∃ 𝑠  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑠  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) | 
						
							| 37 |  | simpl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 38 | 3 | xrsxmet | ⊢ 𝐶  ∈  ( ∞Met ‘ ℝ* ) | 
						
							| 39 | 2 4 | metcn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐶  ∈  ( ∞Met ‘ ℝ* ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ ℝ*  ∧  ∀ 𝑧  ∈  𝑋 ∀ 𝑟  ∈  ℝ+ ∃ 𝑠  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑠  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) ) ) | 
						
							| 40 | 37 38 39 | sylancl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ ℝ*  ∧  ∀ 𝑧  ∈  𝑋 ∀ 𝑟  ∈  ℝ+ ∃ 𝑠  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑧 𝐷 𝑤 )  <  𝑠  →  ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) )  <  𝑟 ) ) ) ) | 
						
							| 41 | 8 36 40 | mpbir2and | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) |