Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
2 |
|
metdscn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
3 |
|
metdscn2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
4 |
|
eqid |
⊢ ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 ) |
5 |
4
|
xrsdsre |
⊢ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
6 |
4
|
xrsxmet |
⊢ ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) |
7 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
8 |
|
eqid |
⊢ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) |
9 |
|
eqid |
⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
10 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) |
11 |
8 9 10
|
metrest |
⊢ ( ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) ∧ ℝ ⊆ ℝ* ) → ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) = ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) ) |
12 |
6 7 11
|
mp2an |
⊢ ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) = ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) |
13 |
5 12
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) |
14 |
3
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
15 |
13 14
|
eqtr3i |
⊢ ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) = ( 𝐾 ↾t ℝ ) |
16 |
15
|
oveq2i |
⊢ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) = ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) |
17 |
3
|
cnfldtop |
⊢ 𝐾 ∈ Top |
18 |
|
cnrest2r |
⊢ ( 𝐾 ∈ Top → ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) ) |
19 |
17 18
|
ax-mp |
⊢ ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) |
20 |
16 19
|
eqsstri |
⊢ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) |
21 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
22 |
1 2 4 9
|
metdscn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
23 |
21 22
|
sylan |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
25 |
1
|
metdsre |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 : 𝑋 ⟶ ℝ ) |
26 |
|
frn |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ → ran 𝐹 ⊆ ℝ ) |
27 |
9
|
mopntopon |
⊢ ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) → ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ∈ ( TopOn ‘ ℝ* ) ) |
28 |
6 27
|
ax-mp |
⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ∈ ( TopOn ‘ ℝ* ) |
29 |
|
cnrest2 |
⊢ ( ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ∈ ( TopOn ‘ ℝ* ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → ( 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) ) |
30 |
28 7 29
|
mp3an13 |
⊢ ( ran 𝐹 ⊆ ℝ → ( 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) ) |
31 |
25 26 30
|
3syl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) ) |
32 |
24 31
|
mpbid |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) |
33 |
20 32
|
sselid |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |