| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | metdscn.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 |  | metdscn.c | ⊢ 𝐶  =  ( dist ‘ ℝ*𝑠 ) | 
						
							| 4 |  | metdscn.k | ⊢ 𝐾  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 5 |  | metdscnlem.1 | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 6 |  | metdscnlem.2 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 7 |  | metdscnlem.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | metdscnlem.4 | ⊢ ( 𝜑  →  𝐵  ∈  𝑋 ) | 
						
							| 9 |  | metdscnlem.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 10 |  | metdscnlem.6 | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝐵 )  <  𝑅 ) | 
						
							| 11 | 1 | metdsf | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 | 12 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 |  | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 16 | 12 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 17 |  | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 19 | 18 | xnegcld | ⊢ ( 𝜑  →  -𝑒 ( 𝐹 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 20 | 15 19 | xaddcld | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝐵 ) )  ∈  ℝ* ) | 
						
							| 21 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 22 | 5 7 8 21 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 23 | 9 | rpxrd | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 24 | 1 | metdstri | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝐴 )  ≤  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 25 | 5 6 7 8 24 | syl22anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ≤  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 26 |  | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝐴 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 27 | 26 | simprbi | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 28 | 13 27 | syl | ⊢ ( 𝜑  →  0  ≤  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 29 |  | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 30 | 29 | simprbi | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 31 | 16 30 | syl | ⊢ ( 𝜑  →  0  ≤  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 32 |  | ge0nemnf | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) )  →  ( 𝐹 ‘ 𝐵 )  ≠  -∞ ) | 
						
							| 33 | 18 31 32 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ≠  -∞ ) | 
						
							| 34 |  | xmetge0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 35 | 5 7 8 34 | syl3anc | ⊢ ( 𝜑  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 36 |  | xlesubadd | ⊢ ( ( ( ( 𝐹 ‘ 𝐴 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ℝ*  ∧  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝐵 )  ≠  -∞  ∧  0  ≤  ( 𝐴 𝐷 𝐵 ) ) )  →  ( ( ( 𝐹 ‘ 𝐴 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝐵 ) )  ≤  ( 𝐴 𝐷 𝐵 )  ↔  ( 𝐹 ‘ 𝐴 )  ≤  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 37 | 15 18 22 28 33 35 36 | syl33anc | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝐴 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝐵 ) )  ≤  ( 𝐴 𝐷 𝐵 )  ↔  ( 𝐹 ‘ 𝐴 )  ≤  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 38 | 25 37 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝐵 ) )  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 39 | 20 22 23 38 10 | xrlelttrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  +𝑒  -𝑒 ( 𝐹 ‘ 𝐵 ) )  <  𝑅 ) |