Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
2 |
|
metdscn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
3 |
|
simpll1 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
|
simprl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) |
5 |
|
simprr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → 𝐴 ∈ 𝑧 ) |
6 |
2
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) → ∃ 𝑟 ∈ ℝ+ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
8 |
|
simprr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
9 |
8
|
ssrind |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ⊆ ( 𝑧 ∩ 𝑆 ) ) |
10 |
|
rpgt0 |
⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
13 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 0 < 𝑟 ↔ ¬ 𝑟 ≤ 0 ) ) |
14 |
11 12 13
|
sylancr |
⊢ ( 𝑟 ∈ ℝ+ → ( 0 < 𝑟 ↔ ¬ 𝑟 ≤ 0 ) ) |
15 |
10 14
|
mpbid |
⊢ ( 𝑟 ∈ ℝ+ → ¬ 𝑟 ≤ 0 ) |
16 |
15
|
ad2antrl |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ¬ 𝑟 ≤ 0 ) |
17 |
|
simpllr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
18 |
17
|
breq2d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝐴 ) ↔ 𝑟 ≤ 0 ) ) |
19 |
3
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
20 |
|
simpl2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝑆 ⊆ 𝑋 ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝑆 ⊆ 𝑋 ) |
22 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ 𝑋 ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝐴 ∈ 𝑋 ) |
24 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
25 |
24
|
ad2antrl |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝑟 ∈ ℝ* ) |
26 |
1
|
metdsge |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ) ) |
27 |
19 21 23 25 26
|
syl31anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ) ) |
28 |
18 27
|
bitr3d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ 0 ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ) ) |
29 |
|
incom |
⊢ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) |
30 |
29
|
eqeq1i |
⊢ ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ↔ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) = ∅ ) |
31 |
28 30
|
bitrdi |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ 0 ↔ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) = ∅ ) ) |
32 |
31
|
necon3bbid |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( ¬ 𝑟 ≤ 0 ↔ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ≠ ∅ ) ) |
33 |
16 32
|
mpbid |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ≠ ∅ ) |
34 |
|
ssn0 |
⊢ ( ( ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ⊆ ( 𝑧 ∩ 𝑆 ) ∧ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ≠ ∅ ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
35 |
9 33 34
|
syl2anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
36 |
7 35
|
rexlimddv |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
37 |
36
|
expr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
38 |
37
|
ralrimiva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
39 |
2
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
42 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
43 |
41 42
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐽 ∈ Top ) |
44 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
45 |
41 44
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝑋 = ∪ 𝐽 ) |
46 |
20 45
|
sseqtrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝑆 ⊆ ∪ 𝐽 ) |
47 |
22 45
|
eleqtrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ∪ 𝐽 ) |
48 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
49 |
48
|
elcls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝐴 ∈ ∪ 𝐽 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
50 |
43 46 47 49
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
51 |
38 50
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
52 |
|
incom |
⊢ ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
53 |
1
|
metdsf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
54 |
53
|
ffvelrnda |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
55 |
54
|
3impa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
56 |
|
eliccxr |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
57 |
55 56
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
58 |
57
|
xrleidd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ) |
59 |
1
|
metdsge |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
60 |
57 59
|
mpdan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
61 |
58 60
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) |
62 |
52 61
|
syl5eq |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ∅ ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ∅ ) |
64 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
65 |
64 42
|
syl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐽 ∈ Top ) |
66 |
|
simpll2 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝑆 ⊆ 𝑋 ) |
67 |
64 44
|
syl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝑋 = ∪ 𝐽 ) |
68 |
66 67
|
sseqtrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
69 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
70 |
|
simpll1 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
71 |
|
simpll3 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑋 ) |
72 |
57
|
ad2antrr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
73 |
2
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∈ 𝐽 ) |
74 |
70 71 72 73
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∈ 𝐽 ) |
75 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝐴 ) ) |
76 |
|
xblcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
77 |
70 71 72 75 76
|
syl112anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
78 |
48
|
clsndisj |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∈ 𝐽 ∧ 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) ≠ ∅ ) |
79 |
65 68 69 74 77 78
|
syl32anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) ≠ ∅ ) |
80 |
79
|
ex |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 0 < ( 𝐹 ‘ 𝐴 ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) ≠ ∅ ) ) |
81 |
80
|
necon2bd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ∅ → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) ) |
82 |
63 81
|
mpd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) |
83 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐴 ) ) ) |
84 |
83
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
85 |
55 84
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
86 |
|
0xr |
⊢ 0 ∈ ℝ* |
87 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
88 |
86 57 87
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
89 |
85 88
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
91 |
90
|
ord |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ¬ 0 < ( 𝐹 ‘ 𝐴 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
92 |
82 91
|
mpd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 0 = ( 𝐹 ‘ 𝐴 ) ) |
93 |
92
|
eqcomd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
94 |
51 93
|
impbida |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |