| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  𝑥  ∈  𝑋 ) | 
						
							| 4 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 5 | 4 | sselda | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑋 ) | 
						
							| 6 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑦 )  ∈  ℝ* ) | 
						
							| 7 | 2 3 5 6 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥 𝐷 𝑦 )  ∈  ℝ* ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 9 | 7 8 | fmptd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) : 𝑆 ⟶ ℝ* ) | 
						
							| 10 | 9 | frnd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) )  ⊆  ℝ* ) | 
						
							| 11 |  | infxrcl | ⊢ ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) )  ⊆  ℝ*  →  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 13 |  | xmetge0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  0  ≤  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 14 | 2 3 5 13 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  0  ≤  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝑆 0  ≤  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 16 |  | ovex | ⊢ ( 𝑥 𝐷 𝑦 )  ∈  V | 
						
							| 17 | 16 | rgenw | ⊢ ∀ 𝑦  ∈  𝑆 ( 𝑥 𝐷 𝑦 )  ∈  V | 
						
							| 18 |  | breq2 | ⊢ ( 𝑧  =  ( 𝑥 𝐷 𝑦 )  →  ( 0  ≤  𝑧  ↔  0  ≤  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 19 | 8 18 | ralrnmptw | ⊢ ( ∀ 𝑦  ∈  𝑆 ( 𝑥 𝐷 𝑦 )  ∈  V  →  ( ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) 0  ≤  𝑧  ↔  ∀ 𝑦  ∈  𝑆 0  ≤  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 20 | 17 19 | ax-mp | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) 0  ≤  𝑧  ↔  ∀ 𝑦  ∈  𝑆 0  ≤  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 21 | 15 20 | sylibr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) 0  ≤  𝑧 ) | 
						
							| 22 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 23 |  | infxrgelb | ⊢ ( ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) )  ⊆  ℝ*  ∧  0  ∈  ℝ* )  →  ( 0  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ↔  ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) 0  ≤  𝑧 ) ) | 
						
							| 24 | 10 22 23 | sylancl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( 0  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ↔  ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) 0  ≤  𝑧 ) ) | 
						
							| 25 | 21 24 | mpbird | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  0  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 26 |  | elxrge0 | ⊢ ( inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ )  ↔  ( inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ*  ∧  0  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 27 | 12 25 26 | sylanbrc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 | 27 1 | fmptd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |