Metamath Proof Explorer


Theorem metdsge

Description: The distance from the point A to the set S is greater than R iff the R -ball around A misses S . (Contributed by Mario Carneiro, 4-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f 𝐹 = ( 𝑥𝑋 ↦ inf ( ran ( 𝑦𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) )
Assertion metdsge ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 metdscn.f 𝐹 = ( 𝑥𝑋 ↦ inf ( ran ( 𝑦𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) )
2 simpl3 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝐴𝑋 )
3 1 metdsval ( 𝐴𝑋 → ( 𝐹𝐴 ) = inf ( ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) )
4 2 3 syl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝐹𝐴 ) = inf ( ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) )
5 4 breq2d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹𝐴 ) ↔ 𝑅 ≤ inf ( ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) )
6 simpll1 ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
7 2 adantr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → 𝐴𝑋 )
8 simpl2 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝑆𝑋 )
9 8 sselda ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → 𝑤𝑋 )
10 xmetcl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝑤𝑋 ) → ( 𝐴 𝐷 𝑤 ) ∈ ℝ* )
11 6 7 9 10 syl3anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → ( 𝐴 𝐷 𝑤 ) ∈ ℝ* )
12 oveq2 ( 𝑦 = 𝑤 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑤 ) )
13 12 cbvmptv ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) = ( 𝑤𝑆 ↦ ( 𝐴 𝐷 𝑤 ) )
14 11 13 fmptd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) : 𝑆 ⟶ ℝ* )
15 14 frnd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) ⊆ ℝ* )
16 simpr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝑅 ∈ ℝ* )
17 infxrgelb ( ( ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) ⊆ ℝ*𝑅 ∈ ℝ* ) → ( 𝑅 ≤ inf ( ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅𝑧 ) )
18 15 16 17 syl2anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ inf ( ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅𝑧 ) )
19 16 adantr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → 𝑅 ∈ ℝ* )
20 elbl2 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝐴𝑋𝑤𝑋 ) ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑤 ) < 𝑅 ) )
21 6 19 7 9 20 syl22anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑤 ) < 𝑅 ) )
22 xrltnle ( ( ( 𝐴 𝐷 𝑤 ) ∈ ℝ*𝑅 ∈ ℝ* ) → ( ( 𝐴 𝐷 𝑤 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) )
23 11 19 22 syl2anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → ( ( 𝐴 𝐷 𝑤 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) )
24 21 23 bitrd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) )
25 24 con2bid ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤𝑆 ) → ( 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ↔ ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) )
26 25 ralbidva ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ∀ 𝑤𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ↔ ∀ 𝑤𝑆 ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) )
27 ovex ( 𝐴 𝐷 𝑤 ) ∈ V
28 27 rgenw 𝑤𝑆 ( 𝐴 𝐷 𝑤 ) ∈ V
29 breq2 ( 𝑧 = ( 𝐴 𝐷 𝑤 ) → ( 𝑅𝑧𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) )
30 13 29 ralrnmptw ( ∀ 𝑤𝑆 ( 𝐴 𝐷 𝑤 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅𝑧 ↔ ∀ 𝑤𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) )
31 28 30 ax-mp ( ∀ 𝑧 ∈ ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅𝑧 ↔ ∀ 𝑤𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) )
32 disj ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ↔ ∀ 𝑤𝑆 ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) )
33 26 31 32 3bitr4g ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ran ( 𝑦𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅𝑧 ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) )
34 5 18 33 3bitrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) )