| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | simpl3 | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  𝐴  ∈  𝑋 ) | 
						
							| 3 | 1 | metdsval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐹 ‘ 𝐴 )  =  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( 𝐹 ‘ 𝐴 )  =  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 5 | 4 | breq2d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( 𝑅  ≤  ( 𝐹 ‘ 𝐴 )  ↔  𝑅  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 6 |  | simpll1 | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  𝑆  ⊆  𝑋 ) | 
						
							| 9 | 8 | sselda | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  𝑤  ∈  𝑋 ) | 
						
							| 10 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝐴 𝐷 𝑤 )  ∈  ℝ* ) | 
						
							| 11 | 6 7 9 10 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  ( 𝐴 𝐷 𝑤 )  ∈  ℝ* ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝐴 𝐷 𝑦 )  =  ( 𝐴 𝐷 𝑤 ) ) | 
						
							| 13 | 12 | cbvmptv | ⊢ ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) )  =  ( 𝑤  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑤 ) ) | 
						
							| 14 | 11 13 | fmptd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) : 𝑆 ⟶ ℝ* ) | 
						
							| 15 | 14 | frnd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) )  ⊆  ℝ* ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  𝑅  ∈  ℝ* ) | 
						
							| 17 |  | infxrgelb | ⊢ ( ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) )  ⊆  ℝ*  ∧  𝑅  ∈  ℝ* )  →  ( 𝑅  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ↔  ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) 𝑅  ≤  𝑧 ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( 𝑅  ≤  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) ,  ℝ* ,   <  )  ↔  ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) 𝑅  ≤  𝑧 ) ) | 
						
							| 19 | 16 | adantr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  𝑅  ∈  ℝ* ) | 
						
							| 20 |  | elbl2 | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑤  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 )  ↔  ( 𝐴 𝐷 𝑤 )  <  𝑅 ) ) | 
						
							| 21 | 6 19 7 9 20 | syl22anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  ( 𝑤  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 )  ↔  ( 𝐴 𝐷 𝑤 )  <  𝑅 ) ) | 
						
							| 22 |  | xrltnle | ⊢ ( ( ( 𝐴 𝐷 𝑤 )  ∈  ℝ*  ∧  𝑅  ∈  ℝ* )  →  ( ( 𝐴 𝐷 𝑤 )  <  𝑅  ↔  ¬  𝑅  ≤  ( 𝐴 𝐷 𝑤 ) ) ) | 
						
							| 23 | 11 19 22 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐴 𝐷 𝑤 )  <  𝑅  ↔  ¬  𝑅  ≤  ( 𝐴 𝐷 𝑤 ) ) ) | 
						
							| 24 | 21 23 | bitrd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  ( 𝑤  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 )  ↔  ¬  𝑅  ≤  ( 𝐴 𝐷 𝑤 ) ) ) | 
						
							| 25 | 24 | con2bid | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  𝑤  ∈  𝑆 )  →  ( 𝑅  ≤  ( 𝐴 𝐷 𝑤 )  ↔  ¬  𝑤  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) | 
						
							| 26 | 25 | ralbidva | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( ∀ 𝑤  ∈  𝑆 𝑅  ≤  ( 𝐴 𝐷 𝑤 )  ↔  ∀ 𝑤  ∈  𝑆 ¬  𝑤  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) | 
						
							| 27 |  | ovex | ⊢ ( 𝐴 𝐷 𝑤 )  ∈  V | 
						
							| 28 | 27 | rgenw | ⊢ ∀ 𝑤  ∈  𝑆 ( 𝐴 𝐷 𝑤 )  ∈  V | 
						
							| 29 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐴 𝐷 𝑤 )  →  ( 𝑅  ≤  𝑧  ↔  𝑅  ≤  ( 𝐴 𝐷 𝑤 ) ) ) | 
						
							| 30 | 13 29 | ralrnmptw | ⊢ ( ∀ 𝑤  ∈  𝑆 ( 𝐴 𝐷 𝑤 )  ∈  V  →  ( ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) 𝑅  ≤  𝑧  ↔  ∀ 𝑤  ∈  𝑆 𝑅  ≤  ( 𝐴 𝐷 𝑤 ) ) ) | 
						
							| 31 | 28 30 | ax-mp | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) 𝑅  ≤  𝑧  ↔  ∀ 𝑤  ∈  𝑆 𝑅  ≤  ( 𝐴 𝐷 𝑤 ) ) | 
						
							| 32 |  | disj | ⊢ ( ( 𝑆  ∩  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) )  =  ∅  ↔  ∀ 𝑤  ∈  𝑆 ¬  𝑤  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) | 
						
							| 33 | 26 31 32 | 3bitr4g | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( ∀ 𝑧  ∈  ran  ( 𝑦  ∈  𝑆  ↦  ( 𝐴 𝐷 𝑦 ) ) 𝑅  ≤  𝑧  ↔  ( 𝑆  ∩  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) )  =  ∅ ) ) | 
						
							| 34 | 5 18 33 | 3bitrd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝑅  ∈  ℝ* )  →  ( 𝑅  ≤  ( 𝐹 ‘ 𝐴 )  ↔  ( 𝑆  ∩  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) )  =  ∅ ) ) |