Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
2 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝐴 ∈ 𝑋 ) |
3 |
1
|
metdsval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝐹 ‘ 𝐴 ) = inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) |
5 |
4
|
breq2d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝐴 ) ↔ 𝑅 ≤ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) ) |
6 |
|
simpll1 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
7 |
2
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝑆 ⊆ 𝑋 ) |
9 |
8
|
sselda |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) |
10 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑤 ) ∈ ℝ* ) |
11 |
6 7 9 10
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 𝐷 𝑤 ) ∈ ℝ* ) |
12 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑤 ) ) |
13 |
12
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) = ( 𝑤 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑤 ) ) |
14 |
11 13
|
fmptd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) : 𝑆 ⟶ ℝ* ) |
15 |
14
|
frnd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) ⊆ ℝ* ) |
16 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝑅 ∈ ℝ* ) |
17 |
|
infxrgelb |
⊢ ( ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) ⊆ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ) ) |
19 |
16
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
20 |
|
elbl2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑤 ) < 𝑅 ) ) |
21 |
6 19 7 9 20
|
syl22anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑤 ) < 𝑅 ) ) |
22 |
|
xrltnle |
⊢ ( ( ( 𝐴 𝐷 𝑤 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 𝐴 𝐷 𝑤 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
23 |
11 19 22
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 𝐷 𝑤 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
24 |
21 23
|
bitrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
25 |
24
|
con2bid |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ↔ ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
26 |
25
|
ralbidva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ∀ 𝑤 ∈ 𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑆 ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
27 |
|
ovex |
⊢ ( 𝐴 𝐷 𝑤 ) ∈ V |
28 |
27
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝑆 ( 𝐴 𝐷 𝑤 ) ∈ V |
29 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐴 𝐷 𝑤 ) → ( 𝑅 ≤ 𝑧 ↔ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
30 |
13 29
|
ralrnmptw |
⊢ ( ∀ 𝑤 ∈ 𝑆 ( 𝐴 𝐷 𝑤 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ↔ ∀ 𝑤 ∈ 𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
31 |
28 30
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ↔ ∀ 𝑤 ∈ 𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) |
32 |
|
disj |
⊢ ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ↔ ∀ 𝑤 ∈ 𝑆 ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) |
33 |
26 31 32
|
3bitr4g |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) ) |
34 |
5 18 33
|
3bitrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) ) |