| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 4 | 3 | sselda | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝐴  ∈  𝑆 )  →  𝐴  ∈  𝑋 ) | 
						
							| 5 | 4 | adantrr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 6 | 2 5 | jca | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 7 | 1 | metdstri | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝐵 )  ≤  ( ( 𝐵 𝐷 𝐴 )  +𝑒  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | syldan | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝐵 )  ≤  ( ( 𝐵 𝐷 𝐴 )  +𝑒  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 10 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐴 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 11 | 9 2 5 10 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵 𝐷 𝐴 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 12 | 1 | metds0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑆 )  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 13 | 12 | 3expa | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝐴  ∈  𝑆 )  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 14 | 13 | adantrr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 15 | 11 14 | oveq12d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐵 𝐷 𝐴 )  +𝑒  ( 𝐹 ‘ 𝐴 ) )  =  ( ( 𝐴 𝐷 𝐵 )  +𝑒  0 ) ) | 
						
							| 16 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 17 | 9 5 2 16 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 18 | 17 | xaddridd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 )  +𝑒  0 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 19 | 15 18 | eqtrd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐵 𝐷 𝐴 )  +𝑒  ( 𝐹 ‘ 𝐴 ) )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 20 | 8 19 | breqtrd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐴 𝐷 𝐵 ) ) |