| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  inf ( ran  ( 𝑦  ∈  𝑆  ↦  ( 𝑥 𝐷 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | n0 | ⊢ ( 𝑆  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  𝑆 ) | 
						
							| 3 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 4 | 1 | metdsf | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑧  ∈  𝑆 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 7 | 6 | ffnd | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑧  ∈  𝑆 )  →  𝐹  Fn  𝑋 ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  𝑤  ∈  𝑋 ) | 
						
							| 10 | 8 9 | ffvelcdmd | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 11 |  | eliccxr | ⊢ ( ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ* ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ* ) | 
						
							| 13 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 15 | 14 | sselda | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝑋 ) | 
						
							| 16 | 15 | adantrr | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 17 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑧 𝐷 𝑤 )  ∈  ℝ ) | 
						
							| 18 | 13 16 9 17 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑧 𝐷 𝑤 )  ∈  ℝ ) | 
						
							| 19 |  | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝐹 ‘ 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 20 | 19 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑤 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 21 | 10 20 | syl | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  0  ≤  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 22 | 1 | metdsle | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  ≤  ( 𝑧 𝐷 𝑤 ) ) | 
						
							| 23 | 3 22 | sylanl1 | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  ≤  ( 𝑧 𝐷 𝑤 ) ) | 
						
							| 24 |  | xrrege0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 )  ∈  ℝ*  ∧  ( 𝑧 𝐷 𝑤 )  ∈  ℝ )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝑤 )  ∧  ( 𝐹 ‘ 𝑤 )  ≤  ( 𝑧 𝐷 𝑤 ) ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 25 | 12 18 21 23 24 | syl22anc | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 26 | 25 | anassrs | ⊢ ( ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑧  ∈  𝑆 )  ∧  𝑤  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 27 | 26 | ralrimiva | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑧  ∈  𝑆 )  →  ∀ 𝑤  ∈  𝑋 ( 𝐹 ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 28 |  | ffnfv | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ  ↔  ( 𝐹  Fn  𝑋  ∧  ∀ 𝑤  ∈  𝑋 ( 𝐹 ‘ 𝑤 )  ∈  ℝ ) ) | 
						
							| 29 | 7 27 28 | sylanbrc | ⊢ ( ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑧  ∈  𝑆 )  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑧  ∈  𝑆  →  𝐹 : 𝑋 ⟶ ℝ ) ) | 
						
							| 31 | 30 | exlimdv | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∃ 𝑧 𝑧  ∈  𝑆  →  𝐹 : 𝑋 ⟶ ℝ ) ) | 
						
							| 32 | 2 31 | biimtrid | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ≠  ∅  →  𝐹 : 𝑋 ⟶ ℝ ) ) | 
						
							| 33 | 32 | 3impia | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋  ∧  𝑆  ≠  ∅ )  →  𝐹 : 𝑋 ⟶ ℝ ) |