Metamath Proof Explorer


Theorem meteq0

Description: The value of a metric is zero iff its arguments are equal. Property M2 of Kreyszig p. 4. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion meteq0 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
2 xmeteq0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
3 1 2 syl3an1 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )