Description: Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | metf | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metflem | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) | |
2 | 1 | simpld | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |