Metamath Proof Explorer


Theorem metge0

Description: The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metge0 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) )

Proof

Step Hyp Ref Expression
1 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
2 xmetge0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) )
3 1 2 syl3an1 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) )