Step |
Hyp |
Ref |
Expression |
1 |
|
metnrm.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
3 |
|
eqid |
⊢ ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) = ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) |
4 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
5 |
|
simp2l |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) |
6 |
|
simp2r |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
8 |
|
eqid |
⊢ ∪ 𝑠 ∈ 𝑦 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) ) / 2 ) ) = ∪ 𝑠 ∈ 𝑦 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑥 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑠 ) ) / 2 ) ) |
9 |
|
eqid |
⊢ ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) = ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) |
10 |
|
eqid |
⊢ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) ) / 2 ) ) = ∪ 𝑡 ∈ 𝑥 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) , 1 , ( ( 𝑢 ∈ 𝑋 ↦ inf ( ran ( 𝑣 ∈ 𝑦 ↦ ( 𝑢 𝐷 𝑣 ) ) , ℝ* , < ) ) ‘ 𝑡 ) ) / 2 ) ) |
11 |
3 1 4 5 6 7 8 9 10
|
metnrmlem3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
12 |
11
|
3expia |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
13 |
12
|
ralrimivva |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑥 ∩ 𝑦 ) = ∅ → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
14 |
|
isnrm3 |
⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑥 ∩ 𝑦 ) = ∅ → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
15 |
2 13 14
|
sylanbrc |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Nrm ) |