| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metdscn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
| 2 |
|
metdscn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 3 |
|
metnrmlem.1 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 |
|
metnrmlem.2 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 5 |
|
metnrmlem.3 |
⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 6 |
|
metnrmlem.4 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 𝑆 ∩ 𝑇 ) = ∅ ) |
| 8 |
|
inelcm |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑇 ) → ( 𝑆 ∩ 𝑇 ) ≠ ∅ ) |
| 9 |
8
|
expcom |
⊢ ( 𝐴 ∈ 𝑇 → ( 𝐴 ∈ 𝑆 → ( 𝑆 ∩ 𝑇 ) ≠ ∅ ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑆 → ( 𝑆 ∩ 𝑇 ) ≠ ∅ ) ) |
| 11 |
10
|
necon2bd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( ( 𝑆 ∩ 𝑇 ) = ∅ → ¬ 𝐴 ∈ 𝑆 ) ) |
| 12 |
7 11
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ¬ 𝐴 ∈ 𝑆 ) |
| 13 |
|
eqcom |
⊢ ( 0 = ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 17 |
16
|
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 18 |
15 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 19 |
2
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 20 |
14 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑋 = ∪ 𝐽 ) |
| 21 |
18 20
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ⊆ 𝑋 ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 23 |
16
|
cldss |
⊢ ( 𝑇 ∈ ( Clsd ‘ 𝐽 ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 25 |
24 20
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ⊆ 𝑋 ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
| 27 |
25 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝑋 ) |
| 28 |
1 2
|
metdseq0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 29 |
14 21 27 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 30 |
13 29
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 0 = ( 𝐹 ‘ 𝐴 ) ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 31 |
|
cldcls |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| 32 |
15 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| 33 |
32
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝐴 ∈ 𝑆 ) ) |
| 34 |
30 33
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 0 = ( 𝐹 ‘ 𝐴 ) ↔ 𝐴 ∈ 𝑆 ) ) |
| 35 |
12 34
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ¬ 0 = ( 𝐹 ‘ 𝐴 ) ) |
| 36 |
1
|
metdsf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 37 |
14 21 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 38 |
37 27
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 39 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐴 ) ) ) |
| 40 |
39
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 41 |
38 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 42 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 43 |
|
eliccxr |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 44 |
38 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 45 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 46 |
42 44 45
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 47 |
41 46
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 48 |
47
|
ord |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( ¬ 0 < ( 𝐹 ‘ 𝐴 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 49 |
35 48
|
mt3d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 0 < ( 𝐹 ‘ 𝐴 ) ) |
| 50 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 51 |
|
ifcl |
⊢ ( ( 1 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ* ) |
| 52 |
50 44 51
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ* ) |
| 53 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 1 ∈ ℝ ) |
| 54 |
|
0lt1 |
⊢ 0 < 1 |
| 55 |
|
breq2 |
⊢ ( 1 = if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) → ( 0 < 1 ↔ 0 < if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 56 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝐴 ) = if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ↔ 0 < if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 57 |
55 56
|
ifboth |
⊢ ( ( 0 < 1 ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 0 < if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) |
| 58 |
54 49 57
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 0 < if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) |
| 59 |
|
xrltle |
⊢ ( ( 0 ∈ ℝ* ∧ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ* ) → ( 0 < if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) → 0 ≤ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 60 |
42 52 59
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 0 < if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) → 0 ≤ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 61 |
58 60
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → 0 ≤ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ) |
| 62 |
|
xrmin1 |
⊢ ( ( 1 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ≤ 1 ) |
| 63 |
50 44 62
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ≤ 1 ) |
| 64 |
|
xrrege0 |
⊢ ( ( ( if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ* ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ≤ 1 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 65 |
52 53 61 63 64
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 66 |
65 58
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 67 |
49 66
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑇 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝐴 ) , 1 , ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ+ ) ) |