Metamath Proof Explorer


Theorem metnrmlem1a

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses metdscn.f 𝐹 = ( 𝑥𝑋 ↦ inf ( ran ( 𝑦𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) )
metdscn.j 𝐽 = ( MetOpen ‘ 𝐷 )
metnrmlem.1 ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
metnrmlem.2 ( 𝜑𝑆 ∈ ( Clsd ‘ 𝐽 ) )
metnrmlem.3 ( 𝜑𝑇 ∈ ( Clsd ‘ 𝐽 ) )
metnrmlem.4 ( 𝜑 → ( 𝑆𝑇 ) = ∅ )
Assertion metnrmlem1a ( ( 𝜑𝐴𝑇 ) → ( 0 < ( 𝐹𝐴 ) ∧ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ+ ) )

Proof

Step Hyp Ref Expression
1 metdscn.f 𝐹 = ( 𝑥𝑋 ↦ inf ( ran ( 𝑦𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) )
2 metdscn.j 𝐽 = ( MetOpen ‘ 𝐷 )
3 metnrmlem.1 ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
4 metnrmlem.2 ( 𝜑𝑆 ∈ ( Clsd ‘ 𝐽 ) )
5 metnrmlem.3 ( 𝜑𝑇 ∈ ( Clsd ‘ 𝐽 ) )
6 metnrmlem.4 ( 𝜑 → ( 𝑆𝑇 ) = ∅ )
7 6 adantr ( ( 𝜑𝐴𝑇 ) → ( 𝑆𝑇 ) = ∅ )
8 inelcm ( ( 𝐴𝑆𝐴𝑇 ) → ( 𝑆𝑇 ) ≠ ∅ )
9 8 expcom ( 𝐴𝑇 → ( 𝐴𝑆 → ( 𝑆𝑇 ) ≠ ∅ ) )
10 9 adantl ( ( 𝜑𝐴𝑇 ) → ( 𝐴𝑆 → ( 𝑆𝑇 ) ≠ ∅ ) )
11 10 necon2bd ( ( 𝜑𝐴𝑇 ) → ( ( 𝑆𝑇 ) = ∅ → ¬ 𝐴𝑆 ) )
12 7 11 mpd ( ( 𝜑𝐴𝑇 ) → ¬ 𝐴𝑆 )
13 eqcom ( 0 = ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) = 0 )
14 3 adantr ( ( 𝜑𝐴𝑇 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
15 4 adantr ( ( 𝜑𝐴𝑇 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) )
16 eqid 𝐽 = 𝐽
17 16 cldss ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 𝐽 )
18 15 17 syl ( ( 𝜑𝐴𝑇 ) → 𝑆 𝐽 )
19 2 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
20 14 19 syl ( ( 𝜑𝐴𝑇 ) → 𝑋 = 𝐽 )
21 18 20 sseqtrrd ( ( 𝜑𝐴𝑇 ) → 𝑆𝑋 )
22 5 adantr ( ( 𝜑𝐴𝑇 ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) )
23 16 cldss ( 𝑇 ∈ ( Clsd ‘ 𝐽 ) → 𝑇 𝐽 )
24 22 23 syl ( ( 𝜑𝐴𝑇 ) → 𝑇 𝐽 )
25 24 20 sseqtrrd ( ( 𝜑𝐴𝑇 ) → 𝑇𝑋 )
26 simpr ( ( 𝜑𝐴𝑇 ) → 𝐴𝑇 )
27 25 26 sseldd ( ( 𝜑𝐴𝑇 ) → 𝐴𝑋 )
28 1 2 metdseq0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋𝐴𝑋 ) → ( ( 𝐹𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
29 14 21 27 28 syl3anc ( ( 𝜑𝐴𝑇 ) → ( ( 𝐹𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
30 13 29 syl5bb ( ( 𝜑𝐴𝑇 ) → ( 0 = ( 𝐹𝐴 ) ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
31 cldcls ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 )
32 15 31 syl ( ( 𝜑𝐴𝑇 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 )
33 32 eleq2d ( ( 𝜑𝐴𝑇 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝐴𝑆 ) )
34 30 33 bitrd ( ( 𝜑𝐴𝑇 ) → ( 0 = ( 𝐹𝐴 ) ↔ 𝐴𝑆 ) )
35 12 34 mtbird ( ( 𝜑𝐴𝑇 ) → ¬ 0 = ( 𝐹𝐴 ) )
36 1 metdsf ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
37 14 21 36 syl2anc ( ( 𝜑𝐴𝑇 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
38 37 27 ffvelrnd ( ( 𝜑𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ( 0 [,] +∞ ) )
39 elxrge0 ( ( 𝐹𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹𝐴 ) ) )
40 39 simprbi ( ( 𝐹𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹𝐴 ) )
41 38 40 syl ( ( 𝜑𝐴𝑇 ) → 0 ≤ ( 𝐹𝐴 ) )
42 0xr 0 ∈ ℝ*
43 eliccxr ( ( 𝐹𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹𝐴 ) ∈ ℝ* )
44 38 43 syl ( ( 𝜑𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ℝ* )
45 xrleloe ( ( 0 ∈ ℝ* ∧ ( 𝐹𝐴 ) ∈ ℝ* ) → ( 0 ≤ ( 𝐹𝐴 ) ↔ ( 0 < ( 𝐹𝐴 ) ∨ 0 = ( 𝐹𝐴 ) ) ) )
46 42 44 45 sylancr ( ( 𝜑𝐴𝑇 ) → ( 0 ≤ ( 𝐹𝐴 ) ↔ ( 0 < ( 𝐹𝐴 ) ∨ 0 = ( 𝐹𝐴 ) ) ) )
47 41 46 mpbid ( ( 𝜑𝐴𝑇 ) → ( 0 < ( 𝐹𝐴 ) ∨ 0 = ( 𝐹𝐴 ) ) )
48 47 ord ( ( 𝜑𝐴𝑇 ) → ( ¬ 0 < ( 𝐹𝐴 ) → 0 = ( 𝐹𝐴 ) ) )
49 35 48 mt3d ( ( 𝜑𝐴𝑇 ) → 0 < ( 𝐹𝐴 ) )
50 1xr 1 ∈ ℝ*
51 ifcl ( ( 1 ∈ ℝ* ∧ ( 𝐹𝐴 ) ∈ ℝ* ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ* )
52 50 44 51 sylancr ( ( 𝜑𝐴𝑇 ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ* )
53 1red ( ( 𝜑𝐴𝑇 ) → 1 ∈ ℝ )
54 0lt1 0 < 1
55 breq2 ( 1 = if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) → ( 0 < 1 ↔ 0 < if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ) )
56 breq2 ( ( 𝐹𝐴 ) = if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) → ( 0 < ( 𝐹𝐴 ) ↔ 0 < if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ) )
57 55 56 ifboth ( ( 0 < 1 ∧ 0 < ( 𝐹𝐴 ) ) → 0 < if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) )
58 54 49 57 sylancr ( ( 𝜑𝐴𝑇 ) → 0 < if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) )
59 xrltle ( ( 0 ∈ ℝ* ∧ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ* ) → ( 0 < if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) → 0 ≤ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ) )
60 42 52 59 sylancr ( ( 𝜑𝐴𝑇 ) → ( 0 < if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) → 0 ≤ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ) )
61 58 60 mpd ( ( 𝜑𝐴𝑇 ) → 0 ≤ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) )
62 xrmin1 ( ( 1 ∈ ℝ* ∧ ( 𝐹𝐴 ) ∈ ℝ* ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ≤ 1 )
63 50 44 62 sylancr ( ( 𝜑𝐴𝑇 ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ≤ 1 )
64 xrrege0 ( ( ( if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ* ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∧ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ≤ 1 ) ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ )
65 52 53 61 63 64 syl22anc ( ( 𝜑𝐴𝑇 ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ )
66 65 58 elrpd ( ( 𝜑𝐴𝑇 ) → if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ+ )
67 49 66 jca ( ( 𝜑𝐴𝑇 ) → ( 0 < ( 𝐹𝐴 ) ∧ if ( 1 ≤ ( 𝐹𝐴 ) , 1 , ( 𝐹𝐴 ) ) ∈ ℝ+ ) )