| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metdscn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
| 2 |
|
metdscn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 3 |
|
metnrmlem.1 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 |
|
metnrmlem.2 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 5 |
|
metnrmlem.3 |
⊢ ( 𝜑 → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 6 |
|
metnrmlem.4 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) |
| 7 |
|
metnrmlem.u |
⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) |
| 8 |
|
metnrmlem.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑇 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) |
| 9 |
|
metnrmlem.v |
⊢ 𝑉 = ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) |
| 10 |
|
incom |
⊢ ( 𝑇 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑇 ) |
| 11 |
10 6
|
eqtrid |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑆 ) = ∅ ) |
| 12 |
8 2 3 5 4 11 9
|
metnrmlem2 |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑉 ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) |
| 14 |
1 2 3 4 5 6 7
|
metnrmlem2 |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈 ) ) |
| 15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 16 |
12
|
simprd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) |
| 17 |
14
|
simprd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
| 18 |
9
|
ineq1i |
⊢ ( 𝑉 ∩ 𝑈 ) = ( ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) |
| 19 |
|
iunin1 |
⊢ ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ( ∪ 𝑠 ∈ 𝑆 ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) |
| 20 |
18 19
|
eqtr4i |
⊢ ( 𝑉 ∩ 𝑈 ) = ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) |
| 21 |
7
|
ineq2i |
⊢ ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 22 |
|
iunin2 |
⊢ ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ∪ 𝑡 ∈ 𝑇 ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 23 |
21 22
|
eqtr4i |
⊢ ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 25 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 26 |
25
|
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 27 |
4 26
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 28 |
2
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 29 |
3 28
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 30 |
27 29
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 31 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑋 ) |
| 32 |
31
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 𝑠 ∈ 𝑋 ) |
| 33 |
25
|
cldss |
⊢ ( 𝑇 ∈ ( Clsd ‘ 𝐽 ) → 𝑇 ⊆ ∪ 𝐽 ) |
| 34 |
5 33
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ∪ 𝐽 ) |
| 35 |
34 29
|
sseqtrrd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
| 36 |
35
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑋 ) |
| 37 |
36
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 𝑡 ∈ 𝑋 ) |
| 38 |
8 2 3 5 4 11
|
metnrmlem1a |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 0 < ( 𝐺 ‘ 𝑠 ) ∧ if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ+ ) ) |
| 39 |
38
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ+ ) |
| 40 |
39
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ+ ) |
| 41 |
40
|
rphalfcld |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ+ ) |
| 42 |
41
|
rpxrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ* ) |
| 43 |
1 2 3 4 5 6
|
metnrmlem1a |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 < ( 𝐹 ‘ 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) ) |
| 44 |
43
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 0 < ( 𝐹 ‘ 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) ) |
| 45 |
44
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ+ ) |
| 46 |
45
|
rphalfcld |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ+ ) |
| 47 |
46
|
rpxrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ* ) |
| 48 |
40
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ ) |
| 49 |
48
|
rehalfcld |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ ) |
| 50 |
45
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 51 |
50
|
rehalfcld |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ ) |
| 52 |
49 51
|
rexaddd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) = ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) + ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 53 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℂ ) |
| 54 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 55 |
|
2cnd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 2 ∈ ℂ ) |
| 56 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 2 ≠ 0 ) |
| 58 |
53 54 55 57
|
divdird |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) = ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) + ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) |
| 59 |
52 58
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) = ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) |
| 60 |
8 2 3 5 4 11
|
metnrmlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑠 ∈ 𝑆 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑡 𝐷 𝑠 ) ) |
| 61 |
60
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑡 𝐷 𝑠 ) ) |
| 62 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑡 𝐷 𝑠 ) = ( 𝑠 𝐷 𝑡 ) ) |
| 63 |
24 37 32 62
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 𝑡 𝐷 𝑠 ) = ( 𝑠 𝐷 𝑡 ) ) |
| 64 |
61 63
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 65 |
1 2 3 4 5 6
|
metnrmlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 66 |
40
|
rpxrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ* ) |
| 67 |
45
|
rpxrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ* ) |
| 68 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ) |
| 69 |
24 32 37 68
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ) |
| 70 |
|
xle2add |
⊢ ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ∈ ℝ* ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ* ) ∧ ( ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ∧ ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) ) |
| 71 |
66 67 69 69 70
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ∧ if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) ) |
| 72 |
64 65 71
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) |
| 73 |
48 50
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 74 |
73
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 75 |
74 55 57
|
divcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 · ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 76 |
|
2re |
⊢ 2 ∈ ℝ |
| 77 |
73
|
rehalfcld |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ ) |
| 78 |
|
rexmul |
⊢ ( ( 2 ∈ ℝ ∧ ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( 2 · ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ) |
| 79 |
76 77 78
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( 2 · ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ) |
| 80 |
48 50
|
rexaddd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) = ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 81 |
75 79 80
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) = ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) +𝑒 if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 82 |
|
x2times |
⊢ ( ( 𝑠 𝐷 𝑡 ) ∈ ℝ* → ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) = ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) |
| 83 |
69 82
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) = ( ( 𝑠 𝐷 𝑡 ) +𝑒 ( 𝑠 𝐷 𝑡 ) ) ) |
| 84 |
72 81 83
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ≤ ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) ) |
| 85 |
77
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ* ) |
| 86 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 87 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → 2 ∈ ℝ+ ) |
| 88 |
|
xlemul2 |
⊢ ( ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ∈ ℝ* ∧ ( 𝑠 𝐷 𝑡 ) ∈ ℝ* ∧ 2 ∈ ℝ+ ) → ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ≤ ( 𝑠 𝐷 𝑡 ) ↔ ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ≤ ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) ) ) |
| 89 |
85 69 87 88
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ≤ ( 𝑠 𝐷 𝑡 ) ↔ ( 2 ·e ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ) ≤ ( 2 ·e ( 𝑠 𝐷 𝑡 ) ) ) ) |
| 90 |
84 89
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) + if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) ) / 2 ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 91 |
59 90
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) |
| 92 |
|
bldisj |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋 ) ∧ ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ∈ ℝ* ∧ ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ∈ ℝ* ∧ ( ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) +𝑒 ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ≤ ( 𝑠 𝐷 𝑡 ) ) ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ∅ ) |
| 93 |
24 32 37 42 47 91 92
|
syl33anc |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ∅ ) |
| 94 |
|
eqimss |
⊢ ( ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) = ∅ → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 95 |
93 94
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ) ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 96 |
95
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 97 |
96
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 98 |
|
iunss |
⊢ ( ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ↔ ∀ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 99 |
97 98
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ∪ 𝑡 ∈ 𝑇 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ ( 𝑡 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐹 ‘ 𝑡 ) , 1 , ( 𝐹 ‘ 𝑡 ) ) / 2 ) ) ) ⊆ ∅ ) |
| 100 |
23 99
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 101 |
100
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 102 |
|
iunss |
⊢ ( ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ↔ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 103 |
101 102
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ ) |
| 104 |
|
ss0 |
⊢ ( ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) ⊆ ∅ → ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ∅ ) |
| 105 |
103 104
|
syl |
⊢ ( 𝜑 → ∪ 𝑠 ∈ 𝑆 ( ( 𝑠 ( ball ‘ 𝐷 ) ( if ( 1 ≤ ( 𝐺 ‘ 𝑠 ) , 1 , ( 𝐺 ‘ 𝑠 ) ) / 2 ) ) ∩ 𝑈 ) = ∅ ) |
| 106 |
20 105
|
eqtrid |
⊢ ( 𝜑 → ( 𝑉 ∩ 𝑈 ) = ∅ ) |
| 107 |
|
sseq2 |
⊢ ( 𝑧 = 𝑉 → ( 𝑆 ⊆ 𝑧 ↔ 𝑆 ⊆ 𝑉 ) ) |
| 108 |
|
ineq1 |
⊢ ( 𝑧 = 𝑉 → ( 𝑧 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑤 ) ) |
| 109 |
108
|
eqeq1d |
⊢ ( 𝑧 = 𝑉 → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( 𝑉 ∩ 𝑤 ) = ∅ ) ) |
| 110 |
107 109
|
3anbi13d |
⊢ ( 𝑧 = 𝑉 → ( ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑉 ∩ 𝑤 ) = ∅ ) ) ) |
| 111 |
|
sseq2 |
⊢ ( 𝑤 = 𝑈 → ( 𝑇 ⊆ 𝑤 ↔ 𝑇 ⊆ 𝑈 ) ) |
| 112 |
|
ineq2 |
⊢ ( 𝑤 = 𝑈 → ( 𝑉 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑈 ) ) |
| 113 |
112
|
eqeq1d |
⊢ ( 𝑤 = 𝑈 → ( ( 𝑉 ∩ 𝑤 ) = ∅ ↔ ( 𝑉 ∩ 𝑈 ) = ∅ ) ) |
| 114 |
111 113
|
3anbi23d |
⊢ ( 𝑤 = 𝑈 → ( ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑉 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ∧ ( 𝑉 ∩ 𝑈 ) = ∅ ) ) ) |
| 115 |
110 114
|
rspc2ev |
⊢ ( ( 𝑉 ∈ 𝐽 ∧ 𝑈 ∈ 𝐽 ∧ ( 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ∧ ( 𝑉 ∩ 𝑈 ) = ∅ ) ) → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 116 |
13 15 16 17 106 115
|
syl113anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐽 ∃ 𝑤 ∈ 𝐽 ( 𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |