Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | metnrm.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
Assertion | metreg | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Reg ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metnrm.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
2 | 1 | metnrm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Nrm ) |
3 | 1 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
4 | haust1 | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Fre ) | |
5 | 3 4 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Fre ) |
6 | nrmreg | ⊢ ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) → 𝐽 ∈ Reg ) | |
7 | 2 5 6 | syl2anc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Reg ) |