Metamath Proof Explorer


Theorem metreg

Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypothesis metnrm.j 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion metreg ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Reg )

Proof

Step Hyp Ref Expression
1 metnrm.j 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 metnrm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Nrm )
3 1 methaus ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus )
4 haust1 ( 𝐽 ∈ Haus → 𝐽 ∈ Fre )
5 3 4 syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Fre )
6 nrmreg ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) → 𝐽 ∈ Reg )
7 2 5 6 syl2anc ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Reg )