Metamath Proof Explorer


Theorem metres

Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metres ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( Met ‘ ( 𝑋𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 metf ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )
2 fdm ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ → dom 𝐷 = ( 𝑋 × 𝑋 ) )
3 metreslem ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋𝑅 ) × ( 𝑋𝑅 ) ) ) )
4 1 2 3 3syl ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋𝑅 ) × ( 𝑋𝑅 ) ) ) )
5 inss1 ( 𝑋𝑅 ) ⊆ 𝑋
6 metres2 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋𝑅 ) ⊆ 𝑋 ) → ( 𝐷 ↾ ( ( 𝑋𝑅 ) × ( 𝑋𝑅 ) ) ) ∈ ( Met ‘ ( 𝑋𝑅 ) ) )
7 5 6 mpan2 ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( ( 𝑋𝑅 ) × ( 𝑋𝑅 ) ) ) ∈ ( Met ‘ ( 𝑋𝑅 ) ) )
8 4 7 eqeltrd ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( Met ‘ ( 𝑋𝑅 ) ) )