Step |
Hyp |
Ref |
Expression |
1 |
|
resdmres |
⊢ ( 𝐷 ↾ dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ) = ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) |
2 |
|
ineq2 |
⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( ( 𝑅 × 𝑅 ) ∩ dom 𝐷 ) = ( ( 𝑅 × 𝑅 ) ∩ ( 𝑋 × 𝑋 ) ) ) |
3 |
|
dmres |
⊢ dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( ( 𝑅 × 𝑅 ) ∩ dom 𝐷 ) |
4 |
|
inxp |
⊢ ( ( 𝑋 × 𝑋 ) ∩ ( 𝑅 × 𝑅 ) ) = ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) |
5 |
|
incom |
⊢ ( ( 𝑋 × 𝑋 ) ∩ ( 𝑅 × 𝑅 ) ) = ( ( 𝑅 × 𝑅 ) ∩ ( 𝑋 × 𝑋 ) ) |
6 |
4 5
|
eqtr3i |
⊢ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) = ( ( 𝑅 × 𝑅 ) ∩ ( 𝑋 × 𝑋 ) ) |
7 |
2 3 6
|
3eqtr4g |
⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) |
8 |
7
|
reseq2d |
⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) |
9 |
1 8
|
eqtr3id |
⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) |