| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metrest.1 |
⊢ 𝐷 = ( 𝐶 ↾ ( 𝑌 × 𝑌 ) ) |
| 2 |
|
metrest.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
| 3 |
|
metrest.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
| 4 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 |
| 5 |
2
|
elmopn2 |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑢 ∈ 𝐽 ↔ ( 𝑢 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) ) ) |
| 6 |
5
|
simplbda |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) |
| 7 |
6
|
adantlr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) |
| 8 |
|
ssralv |
⊢ ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 → ( ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) ) |
| 9 |
4 7 8
|
mpsyl |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) |
| 10 |
|
ssrin |
⊢ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 11 |
10
|
reximi |
⊢ ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 12 |
11
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 13 |
9 12
|
syl |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 14 |
|
inss2 |
⊢ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 |
| 15 |
13 14
|
jctil |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 16 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ⊆ 𝑌 ↔ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 ) ) |
| 17 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 19 |
18
|
raleqbi1dv |
⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 20 |
16 19
|
anbi12d |
⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ↔ ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 21 |
15 20
|
syl5ibrcom |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 22 |
21
|
rexlimdva |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 23 |
2
|
mopntop |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 25 |
|
ssel2 |
⊢ ( ( 𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑌 ) |
| 26 |
|
ssel2 |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 27 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
| 28 |
2
|
blopn |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝐽 ) |
| 29 |
|
eleq1a |
⊢ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝐽 → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 31 |
30
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 32 |
27 31
|
sylan2 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 33 |
32
|
rexlimdva |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 34 |
26 33
|
sylan2 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 35 |
34
|
anassrs |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 36 |
25 35
|
sylan2 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 37 |
36
|
anassrs |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 38 |
37
|
rexlimdva |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 39 |
38
|
adantrd |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) → 𝑧 ∈ 𝐽 ) ) |
| 40 |
39
|
adantrr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) → 𝑧 ∈ 𝐽 ) ) |
| 41 |
40
|
abssdv |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ⊆ 𝐽 ) |
| 42 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ⊆ 𝐽 ) → ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∈ 𝐽 ) |
| 43 |
24 41 42
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∈ 𝐽 ) |
| 44 |
|
oveq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) = ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 45 |
44
|
ineq1d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) = ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) |
| 46 |
45
|
sseq1d |
⊢ ( 𝑦 = 𝑢 → ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 47 |
46
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 48 |
47
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ( 𝑢 ∈ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 49 |
48
|
ad2antll |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 50 |
|
ssel |
⊢ ( 𝑥 ⊆ 𝑌 → ( 𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌 ) ) |
| 51 |
|
ssel |
⊢ ( 𝑌 ⊆ 𝑋 → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑋 ) ) |
| 52 |
|
blcntr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 53 |
52
|
a1d |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 54 |
53
|
ancld |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 55 |
54
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 56 |
55
|
reximdva |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 57 |
56
|
ex |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑢 ∈ 𝑋 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 58 |
51 57
|
sylan9r |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑢 ∈ 𝑌 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 59 |
50 58
|
sylan9r |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( 𝑢 ∈ 𝑥 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 60 |
59
|
adantrr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 61 |
49 60
|
mpdd |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 62 |
44
|
eleq2d |
⊢ ( 𝑦 = 𝑢 → ( 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ↔ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 63 |
46 62
|
anbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 64 |
63
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 65 |
64
|
rspcev |
⊢ ( ( 𝑢 ∈ 𝑥 ∧ ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) → ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 66 |
65
|
ex |
⊢ ( 𝑢 ∈ 𝑥 → ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) → ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 67 |
61 66
|
sylcom |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 68 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑌 ) |
| 69 |
68
|
sseld |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌 ) ) |
| 70 |
67 69
|
jcad |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ) ) |
| 71 |
|
elin |
⊢ ( 𝑢 ∈ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ↔ ( 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ 𝑢 ∈ 𝑌 ) ) |
| 72 |
|
ssel2 |
⊢ ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) → 𝑢 ∈ 𝑥 ) |
| 73 |
71 72
|
sylan2br |
⊢ ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ ( 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ 𝑢 ∈ 𝑌 ) ) → 𝑢 ∈ 𝑥 ) |
| 74 |
73
|
expr |
⊢ ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥 ) ) |
| 75 |
74
|
rexlimivw |
⊢ ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥 ) ) |
| 76 |
75
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥 ) ) |
| 77 |
76
|
imp |
⊢ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) → 𝑢 ∈ 𝑥 ) |
| 78 |
70 77
|
impbid1 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ) ) |
| 79 |
|
elin |
⊢ ( 𝑢 ∈ ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ↔ ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∧ 𝑢 ∈ 𝑌 ) ) |
| 80 |
|
eluniab |
⊢ ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ↔ ∃ 𝑧 ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 81 |
|
ancom |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ↔ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ∧ 𝑢 ∈ 𝑧 ) ) |
| 82 |
|
anass |
⊢ ( ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ∧ 𝑢 ∈ 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 83 |
|
r19.41v |
⊢ ( ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 84 |
83
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 85 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝑥 ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 86 |
84 85
|
bitr2i |
⊢ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 87 |
81 82 86
|
3bitri |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 88 |
87
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 89 |
|
ovex |
⊢ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∈ V |
| 90 |
|
ineq1 |
⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑧 ∩ 𝑌 ) = ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) |
| 91 |
90
|
sseq1d |
⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 92 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑢 ∈ 𝑧 ↔ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 93 |
91 92
|
anbi12d |
⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ↔ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 94 |
89 93
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 95 |
94
|
rexbii |
⊢ ( ∃ 𝑟 ∈ ℝ+ ∃ 𝑧 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 96 |
|
rexcom4 |
⊢ ( ∃ 𝑟 ∈ ℝ+ ∃ 𝑧 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 97 |
95 96
|
bitr3i |
⊢ ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 98 |
97
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 99 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 100 |
98 99
|
bitr2i |
⊢ ( ∃ 𝑧 ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 101 |
80 88 100
|
3bitri |
⊢ ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 102 |
101
|
anbi1i |
⊢ ( ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∧ 𝑢 ∈ 𝑌 ) ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ) |
| 103 |
79 102
|
bitr2i |
⊢ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ↔ 𝑢 ∈ ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) |
| 104 |
78 103
|
bitrdi |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 ↔ 𝑢 ∈ ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) ) |
| 105 |
104
|
eqrdv |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → 𝑥 = ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) |
| 106 |
|
ineq1 |
⊢ ( 𝑢 = ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } → ( 𝑢 ∩ 𝑌 ) = ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) |
| 107 |
106
|
rspceeqv |
⊢ ( ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∈ 𝐽 ∧ 𝑥 = ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) → ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) |
| 108 |
43 105 107
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) |
| 109 |
108
|
ex |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) → ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 110 |
22 109
|
impbid |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 111 |
|
simpr |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
| 112 |
26 111
|
elind |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 113 |
1
|
blres |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) |
| 114 |
113
|
sseq1d |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 115 |
114
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 116 |
27 115
|
sylan2 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 117 |
116
|
rexbidva |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 118 |
112 117
|
sylan2 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 119 |
118
|
anassrs |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 120 |
25 119
|
sylan2 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 121 |
120
|
anassrs |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 122 |
121
|
ralbidva |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 123 |
122
|
pm5.32da |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 124 |
110 123
|
bitr4d |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 125 |
|
id |
⊢ ( 𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋 ) |
| 126 |
2
|
mopnm |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 127 |
|
ssexg |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑌 ∈ V ) |
| 128 |
125 126 127
|
syl2anr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 129 |
|
elrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 130 |
23 128 129
|
syl2an2r |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 131 |
|
xmetres2 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐶 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 132 |
1 131
|
eqeltrid |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 133 |
3
|
elmopn2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 134 |
132 133
|
syl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 135 |
124 130 134
|
3bitr4d |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝑌 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 136 |
135
|
eqrdv |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = 𝐾 ) |