| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐶 )  ∈  ℝ ) | 
						
							| 2 | 1 | 3adant3r2 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐶 )  ∈  ℝ ) | 
						
							| 3 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐶 )  ∈  ℝ ) | 
						
							| 4 | 3 | 3adant3r1 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐷 𝐶 )  ∈  ℝ ) | 
						
							| 5 |  | eqid | ⊢ ( dist ‘ ℝ*𝑠 )  =  ( dist ‘ ℝ*𝑠 ) | 
						
							| 6 | 5 | xrsdsreval | ⊢ ( ( ( 𝐴 𝐷 𝐶 )  ∈  ℝ  ∧  ( 𝐵 𝐷 𝐶 )  ∈  ℝ )  →  ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) )  =  ( abs ‘ ( ( 𝐴 𝐷 𝐶 )  −  ( 𝐵 𝐷 𝐶 ) ) ) ) | 
						
							| 7 | 2 4 6 | syl2anc | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) )  =  ( abs ‘ ( ( 𝐴 𝐷 𝐶 )  −  ( 𝐵 𝐷 𝐶 ) ) ) ) | 
						
							| 8 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 9 | 5 | xmetrtri2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) )  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) )  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 11 | 7 10 | eqbrtrrd | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( abs ‘ ( ( 𝐴 𝐷 𝐶 )  −  ( 𝐵 𝐷 𝐶 ) ) )  ≤  ( 𝐴 𝐷 𝐵 ) ) |