Step |
Hyp |
Ref |
Expression |
1 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ ) |
2 |
1
|
3adant3r2 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ ) |
3 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) |
4 |
3
|
3adant3r1 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) |
5 |
|
eqid |
⊢ ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 ) |
6 |
5
|
xrsdsreval |
⊢ ( ( ( 𝐴 𝐷 𝐶 ) ∈ ℝ ∧ ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ) |
7 |
2 4 6
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ) |
8 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
9 |
5
|
xmetrtri2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
11 |
7 10
|
eqbrtrrd |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |