Step |
Hyp |
Ref |
Expression |
1 |
|
metequiv.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
2 |
|
metequiv.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
3 |
1
|
mopnval |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝐽 = ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ) |
5 |
2
|
mopnval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
7 |
4 6
|
sseq12d |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ⊆ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ) |
8 |
|
blbas |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ran ( ball ‘ 𝐶 ) ∈ TopBases ) |
9 |
|
unirnbl |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ∪ ran ( ball ‘ 𝐶 ) = 𝑋 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ∪ ran ( ball ‘ 𝐶 ) = 𝑋 ) |
11 |
|
unirnbl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
13 |
10 12
|
eqtr4d |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ∪ ran ( ball ‘ 𝐶 ) = ∪ ran ( ball ‘ 𝐷 ) ) |
14 |
|
tgss2 |
⊢ ( ( ran ( ball ‘ 𝐶 ) ∈ TopBases ∧ ∪ ran ( ball ‘ 𝐶 ) = ∪ ran ( ball ‘ 𝐷 ) ) → ( ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ⊆ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
15 |
8 13 14
|
syl2an2r |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ⊆ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
16 |
10
|
raleqdv |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
17 |
|
blssex |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
19 |
18
|
imbi2d |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
21 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
22 |
|
blelrn |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) ) |
23 |
21 22
|
syl3an3 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) ) |
24 |
|
blcntr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
25 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
26 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ↔ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ↔ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
28 |
25 27
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
29 |
28
|
rspcv |
⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
30 |
29
|
com23 |
⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) → ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
31 |
23 24 30
|
sylc |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
32 |
31
|
ad4ant134 |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
33 |
32
|
ralrimdva |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
34 |
|
blss |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) |
35 |
34
|
3expb |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) |
36 |
35
|
ad4ant14 |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) |
37 |
|
r19.29 |
⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) ) |
38 |
|
sstr |
⊢ ( ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
39 |
38
|
expcom |
⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
40 |
39
|
reximdv |
⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 → ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
41 |
40
|
impcom |
⊢ ( ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
42 |
41
|
rexlimivw |
⊢ ( ∃ 𝑟 ∈ ℝ+ ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
43 |
37 42
|
syl |
⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
44 |
43
|
ex |
⊢ ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
45 |
36 44
|
syl5com |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
46 |
45
|
expr |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ) → ( 𝑥 ∈ 𝑦 → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
47 |
46
|
com23 |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
48 |
47
|
ralrimdva |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
49 |
33 48
|
impbid |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
50 |
20 49
|
bitrd |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
51 |
50
|
ralbidva |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
52 |
16 51
|
bitrd |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
53 |
7 15 52
|
3bitrd |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |