Step |
Hyp |
Ref |
Expression |
1 |
|
metequiv.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
2 |
|
metequiv.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
3 |
|
metss2.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) |
4 |
|
metss2.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
5 |
|
metss2.3 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
6 |
|
metss2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
8 |
|
rpdivcl |
⊢ ( ( 𝑟 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) |
9 |
7 5 8
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) |
10 |
1 2 3 4 5 6
|
metss2lem |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
13 |
12
|
rspcev |
⊢ ( ( ( 𝑟 / 𝑅 ) ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
14 |
9 10 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
15 |
14
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
16 |
|
metxmet |
⊢ ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
18 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
20 |
1 2
|
metss |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
22 |
15 21
|
mpbird |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐾 ) |