Metamath Proof Explorer


Theorem metss2

Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), then D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses metequiv.3 𝐽 = ( MetOpen ‘ 𝐶 )
metequiv.4 𝐾 = ( MetOpen ‘ 𝐷 )
metss2.1 ( 𝜑𝐶 ∈ ( Met ‘ 𝑋 ) )
metss2.2 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
metss2.3 ( 𝜑𝑅 ∈ ℝ+ )
metss2.4 ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) )
Assertion metss2 ( 𝜑𝐽𝐾 )

Proof

Step Hyp Ref Expression
1 metequiv.3 𝐽 = ( MetOpen ‘ 𝐶 )
2 metequiv.4 𝐾 = ( MetOpen ‘ 𝐷 )
3 metss2.1 ( 𝜑𝐶 ∈ ( Met ‘ 𝑋 ) )
4 metss2.2 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
5 metss2.3 ( 𝜑𝑅 ∈ ℝ+ )
6 metss2.4 ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) )
7 simpr ( ( 𝑥𝑋𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ )
8 rpdivcl ( ( 𝑟 ∈ ℝ+𝑅 ∈ ℝ+ ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ )
9 7 5 8 syl2anr ( ( 𝜑 ∧ ( 𝑥𝑋𝑟 ∈ ℝ+ ) ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ )
10 1 2 3 4 5 6 metss2lem ( ( 𝜑 ∧ ( 𝑥𝑋𝑟 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) )
11 oveq2 ( 𝑠 = ( 𝑟 / 𝑅 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) )
12 11 sseq1d ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) )
13 12 rspcev ( ( ( 𝑟 / 𝑅 ) ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) )
14 9 10 13 syl2anc ( ( 𝜑 ∧ ( 𝑥𝑋𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) )
15 14 ralrimivva ( 𝜑 → ∀ 𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) )
16 metxmet ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) )
17 3 16 syl ( 𝜑𝐶 ∈ ( ∞Met ‘ 𝑋 ) )
18 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
19 4 18 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
20 1 2 metss ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽𝐾 ↔ ∀ 𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) )
21 17 19 20 syl2anc ( 𝜑 → ( 𝐽𝐾 ↔ ∀ 𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) )
22 15 21 mpbird ( 𝜑𝐽𝐾 )