Metamath Proof Explorer


Theorem metsym

Description: The distance function of a metric space is symmetric. Definition 14-1.1(c) of Gleason p. 223. (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion metsym ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) )

Proof

Step Hyp Ref Expression
1 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
2 xmetsym ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) )
3 1 2 syl3an1 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) )