| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mettri | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝐴 𝐷 𝐶 )  +  ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 2 |  | metsym | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐶 )  =  ( 𝐶 𝐷 𝐵 ) ) | 
						
							| 3 | 2 | 3adant3r1 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐷 𝐶 )  =  ( 𝐶 𝐷 𝐵 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐶 )  +  ( 𝐵 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 𝐶 )  +  ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 5 | 1 4 | breqtrrd | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝐴 𝐷 𝐶 )  +  ( 𝐵 𝐷 𝐶 ) ) ) |