Step |
Hyp |
Ref |
Expression |
1 |
|
mettrifi.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
2 |
|
mettrifi.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
mettrifi.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
4 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 − 1 ) = ( 𝑀 − 1 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( 𝑀 − 1 ) ) ) |
11 |
10
|
sumeq1d |
⊢ ( 𝑥 = 𝑀 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
12 |
8 11
|
breq12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
13 |
6 12
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑛 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 − 1 ) = ( 𝑛 − 1 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( 𝑛 − 1 ) ) ) |
20 |
19
|
sumeq1d |
⊢ ( 𝑥 = 𝑛 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
21 |
17 20
|
breq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
22 |
15 21
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
24 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
27 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ) |
29 |
28
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
30 |
26 29
|
breq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
31 |
24 30
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
33 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) |
34 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ) |
36 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 − 1 ) = ( 𝑁 − 1 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
38 |
37
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
39 |
35 38
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
40 |
33 39
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
42 |
|
0le0 |
⊢ 0 ≤ 0 |
43 |
42
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
44 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
45 |
2 44
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
46 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
47 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
48 |
47
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) ) |
49 |
48
|
rspcv |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) ) |
50 |
45 46 49
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) |
51 |
|
met0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) = 0 ) |
52 |
1 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) = 0 ) |
53 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
54 |
2 53
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
55 |
54
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
56 |
55
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
57 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
58 |
|
fzn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
59 |
54 57 58
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
60 |
56 59
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) |
61 |
60
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ∅ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
62 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 |
63 |
61 62
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
64 |
43 52 63
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
65 |
64
|
a1d |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
66 |
65
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
67 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
68 |
67
|
ex |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
70 |
69
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
71 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
72 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) |
73 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
74 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
75 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
76 |
75
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) ) |
77 |
76
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) ) |
78 |
73 74 77
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) |
79 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
80 |
79
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) ) |
81 |
80
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
82 |
74 81
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
83 |
69
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
84 |
|
rsp |
⊢ ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) ) |
85 |
82 83 84
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
86 |
|
mettri |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
87 |
71 72 78 85 86
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
88 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
89 |
71 72 78 88
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
90 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
91 |
71 72 85 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
92 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
93 |
71 85 78 92
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
94 |
91 93
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
95 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
96 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
97 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
98 |
83 97
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
99 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
100 |
98 99
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
101 |
100
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
102 |
3
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
103 |
101 102
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
104 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
105 |
104
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
106 |
|
peano2uz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
107 |
105 106
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
108 |
|
elfzuz3 |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
109 |
73 108
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
110 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
111 |
|
elfzuz3 |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
112 |
111
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
113 |
|
eluzp1p1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
114 |
112 113
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
115 |
|
uztrn |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
116 |
110 114 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
117 |
|
elfzuzb |
⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) |
118 |
107 116 117
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
119 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
120 |
119
|
eleq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) ) |
121 |
120
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
122 |
82 121
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
123 |
118 122
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
124 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
125 |
96 103 123 124
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
126 |
95 125
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
127 |
|
letr |
⊢ ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∈ ℝ ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
128 |
89 94 126 127
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
129 |
87 128
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
130 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
131 |
|
fzssp1 |
⊢ ( 𝑀 ... ( 𝑛 − 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑛 − 1 ) + 1 ) ) |
132 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
133 |
132
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ℤ ) |
134 |
133
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ℂ ) |
135 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
136 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
137 |
134 135 136
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
138 |
137
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( ( 𝑛 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑛 ) ) |
139 |
131 138
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( 𝑛 − 1 ) ) ⊆ ( 𝑀 ... 𝑛 ) ) |
140 |
139
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) |
141 |
140 125
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
142 |
130 141
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
143 |
91 142 93
|
leadd1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
144 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
145 |
125
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
146 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
147 |
79 146
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
148 |
144 145 147
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
149 |
148
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
150 |
143 149
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
151 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
152 |
134 135 151
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
153 |
152
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑛 ) ) |
154 |
153
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
155 |
154
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
156 |
129 150 155
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
157 |
156
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
158 |
157
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
159 |
70 158
|
syld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
160 |
159
|
expcom |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
161 |
160
|
a2d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
162 |
14 23 32 41 66 161
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
163 |
2 162
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
164 |
5 163
|
mpd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |