Step |
Hyp |
Ref |
Expression |
1 |
|
metuel2.u |
⊢ 𝑈 = ( metUnif ‘ 𝐷 ) |
2 |
1
|
eleq2i |
⊢ ( 𝑉 ∈ 𝑈 ↔ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) |
3 |
2
|
a1i |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ 𝑈 ↔ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) ) |
4 |
|
metuel |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑑 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑑 ) ) |
6 |
5
|
imaeq2d |
⊢ ( 𝑎 = 𝑑 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
7 |
6
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
8 |
7
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
9 |
8
|
elv |
⊢ ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
10 |
9
|
anbi1i |
⊢ ( ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
11 |
|
r19.41v |
⊢ ( ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ∃ 𝑑 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
12 |
10 11
|
bitr4i |
⊢ ( ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑤 ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
14 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑤 ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
15 |
|
rexcom4 |
⊢ ( ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑤 ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
16 |
13 14 15
|
3bitr4i |
⊢ ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ) |
17 |
|
cnvexg |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) |
18 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V ) |
19 |
|
sseq1 |
⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → ( 𝑤 ⊆ 𝑉 ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
20 |
19
|
ceqsexgv |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V → ( ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
21 |
17 18 20
|
3syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑑 ∈ ℝ+ ∃ 𝑤 ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤 ⊆ 𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
24 |
16 23
|
syl5bb |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) ) |
25 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ dom 𝐷 |
26 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
27 |
|
psmetf |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
28 |
|
fdm |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
29 |
26 27 28
|
3syl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
30 |
25 29
|
sseqtrid |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
31 |
|
ssrel2 |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ ( 𝑋 × 𝑋 ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
33 |
|
simplr |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
34 |
|
simpr |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
35 |
33 34
|
opelxpd |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) |
36 |
35
|
biantrurd |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) ) |
37 |
|
psmetcl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
38 |
37
|
ad5ant145 |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
39 |
38
|
3biant1d |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
40 |
|
psmetge0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) |
41 |
40
|
biantrurd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
42 |
41
|
ad5ant145 |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
43 |
|
0xr |
⊢ 0 ∈ ℝ* |
44 |
|
simpllr |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑑 ∈ ℝ+ ) |
45 |
44
|
rpxrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑑 ∈ ℝ* ) |
46 |
|
elico1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑑 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
47 |
43 45 46
|
sylancr |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) ) |
48 |
39 42 47
|
3bitr4d |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ) ) |
49 |
|
df-ov |
⊢ ( 𝑥 𝐷 𝑦 ) = ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) |
50 |
49
|
eleq1i |
⊢ ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) |
51 |
48 50
|
bitrdi |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) |
52 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
53 |
|
ffn |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
54 |
|
elpreima |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) ) |
55 |
52 27 53 54
|
4syl |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( 0 [,) 𝑑 ) ) ) ) |
56 |
36 51 55
|
3bitr4d |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
57 |
56
|
anasss |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
58 |
|
df-br |
⊢ ( 𝑥 𝑉 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) |
59 |
58
|
a1i |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑉 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) |
60 |
57 59
|
imbi12d |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
61 |
60
|
2ralbidva |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑉 ) ) ) |
62 |
32 61
|
bitr4d |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) |
63 |
62
|
rexbidva |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) |
64 |
24 63
|
bitrd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) |
65 |
64
|
pm5.32da |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |
67 |
3 4 66
|
3bitrd |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ 𝑈 ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑 → 𝑥 𝑉 𝑦 ) ) ) ) |