Metamath Proof Explorer


Theorem metuel2

Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 24-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metuel2.u 𝑈 = ( metUnif ‘ 𝐷 )
Assertion metuel2 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉𝑈 ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 metuel2.u 𝑈 = ( metUnif ‘ 𝐷 )
2 1 eleq2i ( 𝑉𝑈𝑉 ∈ ( metUnif ‘ 𝐷 ) )
3 2 a1i ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉𝑈𝑉 ∈ ( metUnif ‘ 𝐷 ) ) )
4 metuel ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ) ) )
5 oveq2 ( 𝑎 = 𝑑 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑑 ) )
6 5 imaeq2d ( 𝑎 = 𝑑 → ( 𝐷 “ ( 0 [,) 𝑎 ) ) = ( 𝐷 “ ( 0 [,) 𝑑 ) ) )
7 6 cbvmptv ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑑 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑑 ) ) )
8 7 elrnmpt ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ) )
9 8 elv ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) )
10 9 anbi1i ( ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤𝑉 ) ↔ ( ∃ 𝑑 ∈ ℝ+ 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) )
11 r19.41v ( ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) ↔ ( ∃ 𝑑 ∈ ℝ+ 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) )
12 10 11 bitr4i ( ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) )
13 12 exbii ( ∃ 𝑤 ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤𝑉 ) ↔ ∃ 𝑤𝑑 ∈ ℝ+ ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) )
14 df-rex ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ↔ ∃ 𝑤 ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑤𝑉 ) )
15 rexcom4 ( ∃ 𝑑 ∈ ℝ+𝑤 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) ↔ ∃ 𝑤𝑑 ∈ ℝ+ ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) )
16 13 14 15 3bitr4i ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ↔ ∃ 𝑑 ∈ ℝ+𝑤 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) )
17 cnvexg ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ V )
18 imaexg ( 𝐷 ∈ V → ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V )
19 sseq1 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) → ( 𝑤𝑉 ↔ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) )
20 19 ceqsexgv ( ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V → ( ∃ 𝑤 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) ↔ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) )
21 17 18 20 3syl ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑤 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) ↔ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) )
22 21 rexbidv ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ℝ+𝑤 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) )
23 22 adantr ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑑 ∈ ℝ+𝑤 ( 𝑤 = ( 𝐷 “ ( 0 [,) 𝑑 ) ) ∧ 𝑤𝑉 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) )
24 16 23 syl5bb ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ↔ ∃ 𝑑 ∈ ℝ+ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ) )
25 cnvimass ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ dom 𝐷
26 simpll ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) )
27 psmetf ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* )
28 fdm ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) )
29 26 27 28 3syl ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → dom 𝐷 = ( 𝑋 × 𝑋 ) )
30 25 29 sseqtrid ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ ( 𝑋 × 𝑋 ) )
31 ssrel2 ( ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥𝑋𝑦𝑋 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑉 ) ) )
32 30 31 syl ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥𝑋𝑦𝑋 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑉 ) ) )
33 simplr ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → 𝑥𝑋 )
34 simpr ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → 𝑦𝑋 )
35 33 34 opelxpd ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑋 × 𝑋 ) )
36 35 biantrurd ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( 0 [,) 𝑑 ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( 0 [,) 𝑑 ) ) ) )
37 psmetcl ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* )
38 37 ad5ant145 ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* )
39 38 3biant1d ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) )
40 psmetge0 ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥𝑋𝑦𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) )
41 40 biantrurd ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) )
42 41 ad5ant145 ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) )
43 0xr 0 ∈ ℝ*
44 simpllr ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → 𝑑 ∈ ℝ+ )
45 44 rpxrd ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → 𝑑 ∈ ℝ* )
46 elico1 ( ( 0 ∈ ℝ*𝑑 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) )
47 43 45 46 sylancr ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ∧ ( 𝑥 𝐷 𝑦 ) < 𝑑 ) ) )
48 39 42 47 3bitr4d ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ) )
49 df-ov ( 𝑥 𝐷 𝑦 ) = ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ )
50 49 eleq1i ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,) 𝑑 ) ↔ ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( 0 [,) 𝑑 ) )
51 48 50 bitrdi ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( 0 [,) 𝑑 ) ) )
52 simp-4l ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) )
53 ffn ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ*𝐷 Fn ( 𝑋 × 𝑋 ) )
54 elpreima ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( 0 [,) 𝑑 ) ) ) )
55 52 27 53 54 4syl ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) ∈ ( 0 [,) 𝑑 ) ) ) )
56 36 51 55 3bitr4d ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ) )
57 56 anasss ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) < 𝑑 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ) )
58 df-br ( 𝑥 𝑉 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑉 )
59 58 a1i ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 𝑉 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑉 ) )
60 57 59 imbi12d ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑉 ) ) )
61 60 2ralbidva ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ↔ ∀ 𝑥𝑋𝑦𝑋 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐷 “ ( 0 [,) 𝑑 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑉 ) ) )
62 32 61 bitr4d ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) )
63 62 rexbidva ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑑 ∈ ℝ+ ( 𝐷 “ ( 0 [,) 𝑑 ) ) ⊆ 𝑉 ↔ ∃ 𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) )
64 24 63 bitrd ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ↔ ∃ 𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) )
65 64 pm5.32da ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) ) )
66 65 adantl ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤𝑉 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) ) )
67 3 4 66 3bitrd ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉𝑈 ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ( ( 𝑥 𝐷 𝑦 ) < 𝑑𝑥 𝑉 𝑦 ) ) ) )