Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
2 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
3 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) ∧ 𝑤 ⊆ 𝑉 ) → 𝑤 ⊆ 𝑉 ) |
4 |
|
eqid |
⊢ ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) = ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
5 |
4
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ↔ ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) |
6 |
5
|
elv |
⊢ ( 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ↔ ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
7 |
6
|
biimpi |
⊢ ( 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) → ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) ∧ 𝑤 ⊆ 𝑉 ) → ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) |
9 |
|
sseq1 |
⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) → ( 𝑤 ⊆ 𝑉 ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) ) |
10 |
9
|
biimpcd |
⊢ ( 𝑤 ⊆ 𝑉 → ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) ) |
11 |
10
|
reximdv |
⊢ ( 𝑤 ⊆ 𝑉 → ( ∃ 𝑟 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) → ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) ) |
12 |
3 8 11
|
sylc |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) ) ∧ 𝑤 ⊆ 𝑉 ) → ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) |
13 |
2
|
ne0d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
14 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) |
15 |
|
metuel |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) |
16 |
15
|
simplbda |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ) → ∃ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) 𝑤 ⊆ 𝑉 ) |
17 |
13 1 14 16
|
syl21anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑤 ∈ ran ( 𝑟 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ) 𝑤 ⊆ 𝑉 ) |
18 |
12 17
|
r19.29a |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) |
19 |
|
imass1 |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 → ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
20 |
19
|
reximi |
⊢ ( ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 → ∃ 𝑟 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
21 |
|
blval2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ) |
22 |
21
|
sseq1d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
23 |
22
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
24 |
23
|
rexbidva |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) “ { 𝑃 } ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
25 |
20 24
|
syl5ibr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∃ 𝑟 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑟 ) ) ⊆ 𝑉 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
27 |
1 2 18 26
|
syl21anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) |
28 |
|
blssexps |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
29 |
28
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |
30 |
27 29
|
mpbird |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑉 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑎 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ ( 𝑉 “ { 𝑃 } ) ) ) |