| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metust.1 | ⊢ 𝐹  =  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐵  ∈  𝐹  ↔  𝐵  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 3 |  | elex | ⊢ ( 𝐵  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝐵  ∈  V ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐵  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝐵  ∈  V ) ) | 
						
							| 5 |  | cnvexg | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ◡ 𝐷  ∈  V ) | 
						
							| 6 |  | imaexg | ⊢ ( ◡ 𝐷  ∈  V  →  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  ∈  V ) | 
						
							| 7 |  | eleq1a | ⊢ ( ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  ∈  V  →  ( 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  →  𝐵  ∈  V ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  →  𝐵  ∈  V ) ) | 
						
							| 9 | 8 | rexlimdvw | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ∃ 𝑎  ∈  ℝ+ 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  →  𝐵  ∈  V ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  =  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 11 | 10 | elrnmpt | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  ↔  ∃ 𝑎  ∈  ℝ+ 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐵  ∈  V  →  ( 𝐵  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  ↔  ∃ 𝑎  ∈  ℝ+ 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) ) | 
						
							| 13 | 4 9 12 | pm5.21ndd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐵  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  ↔  ∃ 𝑎  ∈  ℝ+ 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 14 | 2 13 | bitrid | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐵  ∈  𝐹  ↔  ∃ 𝑎  ∈  ℝ+ 𝐵  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) |