Step |
Hyp |
Ref |
Expression |
1 |
|
metust.1 |
⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
2 |
1
|
metustel |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
3 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
4 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ dom 𝐷 |
5 |
|
psmetf |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
6 |
5
|
fdmd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
8 |
4 7
|
sseqtrid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
9 |
3 8
|
eqsstrd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) |
10 |
9
|
ex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) ) |
11 |
10
|
rexlimdvw |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) ) |
12 |
2 11
|
sylbid |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) ) |
13 |
12
|
ralrimiv |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) |
14 |
|
pwssb |
⊢ ( 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∀ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) |
15 |
13 14
|
sylibr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
17 |
|
cnvexg |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) |
18 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ∈ V ) |
19 |
|
elisset |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ∈ V → ∃ 𝑥 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ) |
20 |
|
1rp |
⊢ 1 ∈ ℝ+ |
21 |
|
oveq2 |
⊢ ( 𝑎 = 1 → ( 0 [,) 𝑎 ) = ( 0 [,) 1 ) ) |
22 |
21
|
imaeq2d |
⊢ ( 𝑎 = 1 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ) |
23 |
22
|
rspceeqv |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ) → ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
24 |
20 23
|
mpan |
⊢ ( 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) → ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
25 |
24
|
eximi |
⊢ ( ∃ 𝑥 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) → ∃ 𝑥 ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
26 |
17 18 19 25
|
4syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∃ 𝑥 ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
27 |
2
|
exbidv |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ 𝐹 ↔ ∃ 𝑥 ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
28 |
26 27
|
mpbird |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
29 |
28
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
30 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) |
31 |
29 30
|
sylibr |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ≠ ∅ ) |
32 |
1
|
metustid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ⊆ 𝑥 ) |
33 |
32
|
adantll |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ⊆ 𝑥 ) |
34 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑝 𝑝 ∈ 𝑋 ) |
35 |
34
|
biimpi |
⊢ ( 𝑋 ≠ ∅ → ∃ 𝑝 𝑝 ∈ 𝑋 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∃ 𝑝 𝑝 ∈ 𝑋 ) |
37 |
|
opelidres |
⊢ ( 𝑝 ∈ 𝑋 → ( 〈 𝑝 , 𝑝 〉 ∈ ( I ↾ 𝑋 ) ↔ 𝑝 ∈ 𝑋 ) ) |
38 |
37
|
ibir |
⊢ ( 𝑝 ∈ 𝑋 → 〈 𝑝 , 𝑝 〉 ∈ ( I ↾ 𝑋 ) ) |
39 |
38
|
ne0d |
⊢ ( 𝑝 ∈ 𝑋 → ( I ↾ 𝑋 ) ≠ ∅ ) |
40 |
39
|
exlimiv |
⊢ ( ∃ 𝑝 𝑝 ∈ 𝑋 → ( I ↾ 𝑋 ) ≠ ∅ ) |
41 |
36 40
|
syl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( I ↾ 𝑋 ) ≠ ∅ ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ≠ ∅ ) |
43 |
|
ssn0 |
⊢ ( ( ( I ↾ 𝑋 ) ⊆ 𝑥 ∧ ( I ↾ 𝑋 ) ≠ ∅ ) → 𝑥 ≠ ∅ ) |
44 |
33 42 43
|
syl2anc |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ≠ ∅ ) |
45 |
44
|
nelrdva |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝐹 ) |
46 |
|
df-nel |
⊢ ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) |
47 |
45 46
|
sylibr |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∅ ∉ 𝐹 ) |
48 |
|
df-ss |
⊢ ( 𝑥 ⊆ 𝑦 ↔ ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
49 |
48
|
biimpi |
⊢ ( 𝑥 ⊆ 𝑦 → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
50 |
49
|
adantl |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
51 |
|
simplrl |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑥 ⊆ 𝑦 ) → 𝑥 ∈ 𝐹 ) |
52 |
50 51
|
eqeltrd |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
53 |
|
sseqin2 |
⊢ ( 𝑦 ⊆ 𝑥 ↔ ( 𝑥 ∩ 𝑦 ) = 𝑦 ) |
54 |
53
|
biimpi |
⊢ ( 𝑦 ⊆ 𝑥 → ( 𝑥 ∩ 𝑦 ) = 𝑦 ) |
55 |
54
|
adantl |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑥 ∩ 𝑦 ) = 𝑦 ) |
56 |
|
simplrr |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ 𝐹 ) |
57 |
55 56
|
eqeltrd |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
58 |
|
simplr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
59 |
|
simprl |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐹 ) |
60 |
|
simprr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐹 ) |
61 |
1
|
metustto |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |
62 |
58 59 60 61
|
syl3anc |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |
63 |
52 57 62
|
mpjaodan |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
64 |
|
ssidd |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
65 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
66 |
65
|
rspcev |
⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
67 |
63 64 66
|
syl2anc |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
68 |
67
|
ralrimivva |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
69 |
31 47 68
|
3jca |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
70 |
|
elfvex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) |
71 |
70
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝑋 ∈ V ) |
72 |
71 71
|
xpexd |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
73 |
|
isfbas2 |
⊢ ( ( 𝑋 × 𝑋 ) ∈ V → ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
74 |
72 73
|
syl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
75 |
16 69 74
|
mpbir2and |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |