| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metust.1 | ⊢ 𝐹  =  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 2 | 1 | metustel | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑥  ∈  𝐹  ↔  ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 4 |  | cnvimass | ⊢ ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  ⊆  dom  𝐷 | 
						
							| 5 |  | psmetf | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 6 | 5 | fdmd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 8 | 4 7 | sseqtrid | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 9 | 3 8 | eqsstrd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝑥  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  →  𝑥  ⊆  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 11 | 10 | rexlimdvw | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  →  𝑥  ⊆  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 12 | 2 11 | sylbid | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑥  ∈  𝐹  →  𝑥  ⊆  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 13 | 12 | ralrimiv | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∀ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 14 |  | pwssb | ⊢ ( 𝐹  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ↔  ∀ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝐹  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  𝐹  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) | 
						
							| 17 |  | cnvexg | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ◡ 𝐷  ∈  V ) | 
						
							| 18 |  | imaexg | ⊢ ( ◡ 𝐷  ∈  V  →  ( ◡ 𝐷  “  ( 0 [,) 1 ) )  ∈  V ) | 
						
							| 19 |  | elisset | ⊢ ( ( ◡ 𝐷  “  ( 0 [,) 1 ) )  ∈  V  →  ∃ 𝑥 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 1 ) ) ) | 
						
							| 20 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑎  =  1  →  ( 0 [,) 𝑎 )  =  ( 0 [,) 1 ) ) | 
						
							| 22 | 21 | imaeq2d | ⊢ ( 𝑎  =  1  →  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  =  ( ◡ 𝐷  “  ( 0 [,) 1 ) ) ) | 
						
							| 23 | 22 | rspceeqv | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 1 ) ) )  →  ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 24 | 20 23 | mpan | ⊢ ( 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 1 ) )  →  ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 25 | 24 | eximi | ⊢ ( ∃ 𝑥 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 1 ) )  →  ∃ 𝑥 ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 26 | 17 18 19 25 | 4syl | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∃ 𝑥 ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 27 | 2 | exbidv | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ∃ 𝑥 𝑥  ∈  𝐹  ↔  ∃ 𝑥 ∃ 𝑎  ∈  ℝ+ 𝑥  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 28 | 26 27 | mpbird | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 30 |  | n0 | ⊢ ( 𝐹  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  𝐹  ≠  ∅ ) | 
						
							| 32 | 1 | metustid | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝐹 )  →  (  I   ↾  𝑋 )  ⊆  𝑥 ) | 
						
							| 33 | 32 | adantll | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  𝑥  ∈  𝐹 )  →  (  I   ↾  𝑋 )  ⊆  𝑥 ) | 
						
							| 34 |  | n0 | ⊢ ( 𝑋  ≠  ∅  ↔  ∃ 𝑝 𝑝  ∈  𝑋 ) | 
						
							| 35 | 34 | biimpi | ⊢ ( 𝑋  ≠  ∅  →  ∃ 𝑝 𝑝  ∈  𝑋 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ∃ 𝑝 𝑝  ∈  𝑋 ) | 
						
							| 37 |  | opelidres | ⊢ ( 𝑝  ∈  𝑋  →  ( 〈 𝑝 ,  𝑝 〉  ∈  (  I   ↾  𝑋 )  ↔  𝑝  ∈  𝑋 ) ) | 
						
							| 38 | 37 | ibir | ⊢ ( 𝑝  ∈  𝑋  →  〈 𝑝 ,  𝑝 〉  ∈  (  I   ↾  𝑋 ) ) | 
						
							| 39 | 38 | ne0d | ⊢ ( 𝑝  ∈  𝑋  →  (  I   ↾  𝑋 )  ≠  ∅ ) | 
						
							| 40 | 39 | exlimiv | ⊢ ( ∃ 𝑝 𝑝  ∈  𝑋  →  (  I   ↾  𝑋 )  ≠  ∅ ) | 
						
							| 41 | 36 40 | syl | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  (  I   ↾  𝑋 )  ≠  ∅ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  𝑥  ∈  𝐹 )  →  (  I   ↾  𝑋 )  ≠  ∅ ) | 
						
							| 43 |  | ssn0 | ⊢ ( ( (  I   ↾  𝑋 )  ⊆  𝑥  ∧  (  I   ↾  𝑋 )  ≠  ∅ )  →  𝑥  ≠  ∅ ) | 
						
							| 44 | 33 42 43 | syl2anc | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ≠  ∅ ) | 
						
							| 45 | 44 | nelrdva | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 46 |  | df-nel | ⊢ ( ∅  ∉  𝐹  ↔  ¬  ∅  ∈  𝐹 ) | 
						
							| 47 | 45 46 | sylibr | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ∅  ∉  𝐹 ) | 
						
							| 48 |  | dfss2 | ⊢ ( 𝑥  ⊆  𝑦  ↔  ( 𝑥  ∩  𝑦 )  =  𝑥 ) | 
						
							| 49 | 48 | biimpi | ⊢ ( 𝑥  ⊆  𝑦  →  ( 𝑥  ∩  𝑦 )  =  𝑥 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑥  ∩  𝑦 )  =  𝑥 ) | 
						
							| 51 |  | simplrl | ⊢ ( ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  ∧  𝑥  ⊆  𝑦 )  →  𝑥  ∈  𝐹 ) | 
						
							| 52 | 50 51 | eqeltrd | ⊢ ( ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 53 |  | sseqin2 | ⊢ ( 𝑦  ⊆  𝑥  ↔  ( 𝑥  ∩  𝑦 )  =  𝑦 ) | 
						
							| 54 | 53 | biimpi | ⊢ ( 𝑦  ⊆  𝑥  →  ( 𝑥  ∩  𝑦 )  =  𝑦 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  ∧  𝑦  ⊆  𝑥 )  →  ( 𝑥  ∩  𝑦 )  =  𝑦 ) | 
						
							| 56 |  | simplrr | ⊢ ( ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  ∧  𝑦  ⊆  𝑥 )  →  𝑦  ∈  𝐹 ) | 
						
							| 57 | 55 56 | eqeltrd | ⊢ ( ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  ∧  𝑦  ⊆  𝑥 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 58 |  | simplr | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 59 |  | simprl | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  𝑥  ∈  𝐹 ) | 
						
							| 60 |  | simprr | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 61 | 1 | metustto | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 )  →  ( 𝑥  ⊆  𝑦  ∨  𝑦  ⊆  𝑥 ) ) | 
						
							| 62 | 58 59 60 61 | syl3anc | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  ( 𝑥  ⊆  𝑦  ∨  𝑦  ⊆  𝑥 ) ) | 
						
							| 63 | 52 57 62 | mpjaodan | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 64 |  | ssidd | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  ( 𝑥  ∩  𝑦 )  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 65 |  | sseq1 | ⊢ ( 𝑧  =  ( 𝑥  ∩  𝑦 )  →  ( 𝑧  ⊆  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑥  ∩  𝑦 )  ⊆  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 66 | 65 | rspcev | ⊢ ( ( ( 𝑥  ∩  𝑦 )  ∈  𝐹  ∧  ( 𝑥  ∩  𝑦 )  ⊆  ( 𝑥  ∩  𝑦 ) )  →  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 67 | 63 64 66 | syl2anc | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 68 | 67 | ralrimivva | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  𝐹 ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 69 | 31 47 68 | 3jca | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ( 𝐹  ≠  ∅  ∧  ∅  ∉  𝐹  ∧  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  𝐹 ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 70 |  | elfvex | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  𝑋  ∈  V ) | 
						
							| 72 | 71 71 | xpexd | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ( 𝑋  ×  𝑋 )  ∈  V ) | 
						
							| 73 |  | isfbas2 | ⊢ ( ( 𝑋  ×  𝑋 )  ∈  V  →  ( 𝐹  ∈  ( fBas ‘ ( 𝑋  ×  𝑋 ) )  ↔  ( 𝐹  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝐹  ≠  ∅  ∧  ∅  ∉  𝐹  ∧  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  𝐹 ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ( 𝑥  ∩  𝑦 ) ) ) ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  ( 𝐹  ∈  ( fBas ‘ ( 𝑋  ×  𝑋 ) )  ↔  ( 𝐹  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝐹  ≠  ∅  ∧  ∅  ∉  𝐹  ∧  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  𝐹 ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ( 𝑥  ∩  𝑦 ) ) ) ) ) | 
						
							| 75 | 16 69 74 | mpbir2and | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( PsMet ‘ 𝑋 ) )  →  𝐹  ∈  ( fBas ‘ ( 𝑋  ×  𝑋 ) ) ) |