| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metust.1 | ⊢ 𝐹  =  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 2 |  | relres | ⊢ Rel  (  I   ↾  𝑋 ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  Rel  (  I   ↾  𝑋 ) ) | 
						
							| 4 |  | vex | ⊢ 𝑞  ∈  V | 
						
							| 5 | 4 | brresi | ⊢ ( 𝑝 (  I   ↾  𝑋 ) 𝑞  ↔  ( 𝑝  ∈  𝑋  ∧  𝑝  I  𝑞 ) ) | 
						
							| 6 |  | df-br | ⊢ ( 𝑝 (  I   ↾  𝑋 ) 𝑞  ↔  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) ) | 
						
							| 7 | 4 | ideq | ⊢ ( 𝑝  I  𝑞  ↔  𝑝  =  𝑞 ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝑝  ∈  𝑋  ∧  𝑝  I  𝑞 )  ↔  ( 𝑝  ∈  𝑋  ∧  𝑝  =  𝑞 ) ) | 
						
							| 9 | 5 6 8 | 3bitr3i | ⊢ ( 〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 )  ↔  ( 𝑝  ∈  𝑋  ∧  𝑝  =  𝑞 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 )  →  ( 𝑝  ∈  𝑋  ∧  𝑝  =  𝑞 ) ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  ( 𝑝  ∈  𝑋  ∧  𝑝  =  𝑞 ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  𝑝  =  𝑞 ) | 
						
							| 13 |  | df-ov | ⊢ ( 𝑝 𝐷 𝑝 )  =  ( 𝐷 ‘ 〈 𝑝 ,  𝑝 〉 ) | 
						
							| 14 |  | opeq2 | ⊢ ( 𝑝  =  𝑞  →  〈 𝑝 ,  𝑝 〉  =  〈 𝑝 ,  𝑞 〉 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑝  =  𝑞  →  ( 𝐷 ‘ 〈 𝑝 ,  𝑝 〉 )  =  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 ) ) | 
						
							| 16 | 13 15 | eqtrid | ⊢ ( 𝑝  =  𝑞  →  ( 𝑝 𝐷 𝑝 )  =  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 ) ) | 
						
							| 17 | 12 16 | syl | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  ( 𝑝 𝐷 𝑝 )  =  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 ) ) | 
						
							| 18 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 19 | 11 | simpld | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  𝑝  ∈  𝑋 ) | 
						
							| 20 |  | psmet0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑝  ∈  𝑋 )  →  ( 𝑝 𝐷 𝑝 )  =  0 ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  ( 𝑝 𝐷 𝑝 )  =  0 ) | 
						
							| 22 | 17 21 | eqtr3d | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  =  0 ) | 
						
							| 23 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 24 |  | rpxr | ⊢ ( 𝑎  ∈  ℝ+  →  𝑎  ∈  ℝ* ) | 
						
							| 25 |  | rpgt0 | ⊢ ( 𝑎  ∈  ℝ+  →  0  <  𝑎 ) | 
						
							| 26 |  | lbico1 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑎  ∈  ℝ*  ∧  0  <  𝑎 )  →  0  ∈  ( 0 [,) 𝑎 ) ) | 
						
							| 27 | 23 24 25 26 | mp3an2i | ⊢ ( 𝑎  ∈  ℝ+  →  0  ∈  ( 0 [,) 𝑎 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  0  ∈  ( 0 [,) 𝑎 ) ) | 
						
							| 29 | 22 28 | eqeltrd | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  ∈  ( 0 [,) 𝑎 ) ) | 
						
							| 30 |  | psmetf | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 31 | 30 | ffund | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  Fun  𝐷 ) | 
						
							| 32 | 31 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  Fun  𝐷 ) | 
						
							| 33 | 12 19 | eqeltrrd | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  𝑞  ∈  𝑋 ) | 
						
							| 34 | 19 33 | opelxpd | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  〈 𝑝 ,  𝑞 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 35 | 30 | fdmd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 37 | 34 36 | eleqtrrd | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  〈 𝑝 ,  𝑞 〉  ∈  dom  𝐷 ) | 
						
							| 38 |  | fvimacnv | ⊢ ( ( Fun  𝐷  ∧  〈 𝑝 ,  𝑞 〉  ∈  dom  𝐷 )  →  ( ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 39 | 32 37 38 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  ( ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 40 | 29 39 | mpbid | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  →  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 43 | 41 42 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  〈 𝑝 ,  𝑞 〉  ∈  𝐴 ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  →  𝐴  ∈  𝐹 ) | 
						
							| 45 | 1 | metustel | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐴  ∈  𝐹  ↔  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  →  ( 𝐴  ∈  𝐹  ↔  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 47 | 44 46 | mpbid | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  →  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 48 | 43 47 | r19.29a | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 ) )  →  〈 𝑝 ,  𝑞 〉  ∈  𝐴 ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 〈 𝑝 ,  𝑞 〉  ∈  (  I   ↾  𝑋 )  →  〈 𝑝 ,  𝑞 〉  ∈  𝐴 ) ) | 
						
							| 50 | 3 49 | relssdv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  (  I   ↾  𝑋 )  ⊆  𝐴 ) |