Step |
Hyp |
Ref |
Expression |
1 |
|
metust.1 |
⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
2 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ dom 𝐷 |
3 |
|
psmetf |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
4 |
2 3
|
fssdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
6 |
|
cnvexg |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) |
7 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ V ) |
8 |
|
elpwg |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ V → ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
9 |
6 7 8
|
3syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
11 |
5 10
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ∀ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
13 |
|
eqid |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
14 |
13
|
rnmptss |
⊢ ( ∀ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∈ 𝒫 ( 𝑋 × 𝑋 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
15 |
12 14
|
syl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
16 |
1 15
|
eqsstrid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
17 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ∈ 𝐹 ) |
18 |
16 17
|
sseldd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
19 |
18
|
elpwid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ ( 𝑋 × 𝑋 ) ) |