| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metust.1 | ⊢ 𝐹  =  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 2 | 1 | metustss | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  𝐴  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 3 |  | cnvss | ⊢ ( 𝐴  ⊆  ( 𝑋  ×  𝑋 )  →  ◡ 𝐴  ⊆  ◡ ( 𝑋  ×  𝑋 ) ) | 
						
							| 4 |  | cnvxp | ⊢ ◡ ( 𝑋  ×  𝑋 )  =  ( 𝑋  ×  𝑋 ) | 
						
							| 5 | 3 4 | sseqtrdi | ⊢ ( 𝐴  ⊆  ( 𝑋  ×  𝑋 )  →  ◡ 𝐴  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ◡ 𝐴  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 7 |  | simp-4l | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 8 |  | simpr1r | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 )  ∧  𝑎  ∈  ℝ+  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) )  →  𝑞  ∈  𝑋 ) | 
						
							| 9 | 8 | 3anassrs | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝑞  ∈  𝑋 ) | 
						
							| 10 |  | simpr1l | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 )  ∧  𝑎  ∈  ℝ+  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) )  →  𝑝  ∈  𝑋 ) | 
						
							| 11 | 10 | 3anassrs | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝑝  ∈  𝑋 ) | 
						
							| 12 |  | psmetsym | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑞  ∈  𝑋  ∧  𝑝  ∈  𝑋 )  →  ( 𝑞 𝐷 𝑝 )  =  ( 𝑝 𝐷 𝑞 ) ) | 
						
							| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 𝑞 𝐷 𝑝 )  =  ( 𝑝 𝐷 𝑞 ) ) | 
						
							| 14 |  | df-ov | ⊢ ( 𝑞 𝐷 𝑝 )  =  ( 𝐷 ‘ 〈 𝑞 ,  𝑝 〉 ) | 
						
							| 15 |  | df-ov | ⊢ ( 𝑝 𝐷 𝑞 )  =  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 ) | 
						
							| 16 | 13 14 15 | 3eqtr3g | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 𝐷 ‘ 〈 𝑞 ,  𝑝 〉 )  =  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( ( 𝐷 ‘ 〈 𝑞 ,  𝑝 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  ∈  ( 0 [,) 𝑎 ) ) ) | 
						
							| 18 |  | psmetf | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 19 |  | ffun | ⊢ ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  →  Fun  𝐷 ) | 
						
							| 20 | 7 18 19 | 3syl | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  Fun  𝐷 ) | 
						
							| 21 |  | simpllr | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) ) | 
						
							| 22 | 21 | ancomd | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 𝑞  ∈  𝑋  ∧  𝑝  ∈  𝑋 ) ) | 
						
							| 23 |  | opelxpi | ⊢ ( ( 𝑞  ∈  𝑋  ∧  𝑝  ∈  𝑋 )  →  〈 𝑞 ,  𝑝 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  〈 𝑞 ,  𝑝 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 25 |  | fdm | ⊢ ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 26 | 7 18 25 | 3syl | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 27 | 24 26 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  〈 𝑞 ,  𝑝 〉  ∈  dom  𝐷 ) | 
						
							| 28 |  | fvimacnv | ⊢ ( ( Fun  𝐷  ∧  〈 𝑞 ,  𝑝 〉  ∈  dom  𝐷 )  →  ( ( 𝐷 ‘ 〈 𝑞 ,  𝑝 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  〈 𝑞 ,  𝑝 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 29 | 20 27 28 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( ( 𝐷 ‘ 〈 𝑞 ,  𝑝 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  〈 𝑞 ,  𝑝 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 30 |  | opelxpi | ⊢ ( ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 )  →  〈 𝑝 ,  𝑞 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 31 | 21 30 | syl | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  〈 𝑝 ,  𝑞 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 32 | 31 26 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  〈 𝑝 ,  𝑞 〉  ∈  dom  𝐷 ) | 
						
							| 33 |  | fvimacnv | ⊢ ( ( Fun  𝐷  ∧  〈 𝑝 ,  𝑞 〉  ∈  dom  𝐷 )  →  ( ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 34 | 20 32 33 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( ( 𝐷 ‘ 〈 𝑝 ,  𝑞 〉 )  ∈  ( 0 [,) 𝑎 )  ↔  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 35 | 17 29 34 | 3bitr3d | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 〈 𝑞 ,  𝑝 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) )  ↔  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 37 | 36 | eleq2d | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 〈 𝑞 ,  𝑝 〉  ∈  𝐴  ↔  〈 𝑞 ,  𝑝 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 38 | 36 | eleq2d | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 〈 𝑝 ,  𝑞 〉  ∈  𝐴  ↔  〈 𝑝 ,  𝑞 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 39 | 35 37 38 | 3bitr4d | ⊢ ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  ∧  𝑎  ∈  ℝ+ )  ∧  𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 〈 𝑞 ,  𝑝 〉  ∈  𝐴  ↔  〈 𝑝 ,  𝑞 〉  ∈  𝐴 ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  =  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 41 | 40 | elrnmpt | ⊢ ( 𝐴  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ( 𝐴  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  ↔  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) ) | 
						
							| 42 | 41 | ibi | ⊢ ( 𝐴  ∈  ran  ( 𝑎  ∈  ℝ+  ↦  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) )  →  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 43 | 42 1 | eleq2s | ⊢ ( 𝐴  ∈  𝐹  →  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 44 | 43 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  →  ∃ 𝑎  ∈  ℝ+ 𝐴  =  ( ◡ 𝐷  “  ( 0 [,) 𝑎 ) ) ) | 
						
							| 45 | 39 44 | r19.29a | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  →  ( 〈 𝑞 ,  𝑝 〉  ∈  𝐴  ↔  〈 𝑝 ,  𝑞 〉  ∈  𝐴 ) ) | 
						
							| 46 |  | df-br | ⊢ ( 𝑝 ◡ 𝐴 𝑞  ↔  〈 𝑝 ,  𝑞 〉  ∈  ◡ 𝐴 ) | 
						
							| 47 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 48 |  | vex | ⊢ 𝑞  ∈  V | 
						
							| 49 | 47 48 | opelcnv | ⊢ ( 〈 𝑝 ,  𝑞 〉  ∈  ◡ 𝐴  ↔  〈 𝑞 ,  𝑝 〉  ∈  𝐴 ) | 
						
							| 50 | 46 49 | bitri | ⊢ ( 𝑝 ◡ 𝐴 𝑞  ↔  〈 𝑞 ,  𝑝 〉  ∈  𝐴 ) | 
						
							| 51 |  | df-br | ⊢ ( 𝑝 𝐴 𝑞  ↔  〈 𝑝 ,  𝑞 〉  ∈  𝐴 ) | 
						
							| 52 | 45 50 51 | 3bitr4g | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  ( 𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 ) )  →  ( 𝑝 ◡ 𝐴 𝑞  ↔  𝑝 𝐴 𝑞 ) ) | 
						
							| 53 | 52 | 3impb | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  𝑝  ∈  𝑋  ∧  𝑞  ∈  𝑋 )  →  ( 𝑝 ◡ 𝐴 𝑞  ↔  𝑝 𝐴 𝑞 ) ) | 
						
							| 54 | 6 2 53 | eqbrrdva | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ◡ 𝐴  =  𝐴 ) |