Step |
Hyp |
Ref |
Expression |
1 |
|
df-metu |
⊢ metUnif = ( 𝑑 ∈ ∪ ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) ) |
2 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
3 |
2
|
dmeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom 𝑑 = dom 𝐷 ) |
4 |
3
|
dmeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = dom dom 𝐷 ) |
5 |
|
psmetdmdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑋 = dom dom 𝐷 ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
8 |
7
|
sqxpeqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( dom dom 𝑑 × dom dom 𝑑 ) = ( 𝑋 × 𝑋 ) ) |
9 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) ∧ 𝑎 ∈ ℝ+ ) → 𝑑 = 𝐷 ) |
10 |
9
|
cnveqd |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) ∧ 𝑎 ∈ ℝ+ ) → ◡ 𝑑 = ◡ 𝐷 ) |
11 |
10
|
imaeq1d |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) ∧ 𝑎 ∈ ℝ+ ) → ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
12 |
11
|
mpteq2dva |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
13 |
12
|
rneqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
14 |
8 13
|
oveq12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
15 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ dom PsMet ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( PsMet ‘ 𝑥 ) = ( PsMet ‘ 𝑋 ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐷 ∈ ( PsMet ‘ 𝑥 ) ↔ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ) |
18 |
17
|
rspcev |
⊢ ( ( 𝑋 ∈ dom PsMet ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∃ 𝑥 ∈ dom PsMet 𝐷 ∈ ( PsMet ‘ 𝑥 ) ) |
19 |
15 18
|
mpancom |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∃ 𝑥 ∈ dom PsMet 𝐷 ∈ ( PsMet ‘ 𝑥 ) ) |
20 |
|
df-psmet |
⊢ PsMet = ( 𝑦 ∈ V ↦ { 𝑢 ∈ ( ℝ* ↑m ( 𝑦 × 𝑦 ) ) ∣ ∀ 𝑧 ∈ 𝑦 ( ( 𝑧 𝑢 𝑧 ) = 0 ∧ ∀ 𝑤 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑧 𝑢 𝑤 ) ≤ ( ( 𝑣 𝑢 𝑧 ) +𝑒 ( 𝑣 𝑢 𝑤 ) ) ) } ) |
21 |
20
|
funmpt2 |
⊢ Fun PsMet |
22 |
|
elunirn |
⊢ ( Fun PsMet → ( 𝐷 ∈ ∪ ran PsMet ↔ ∃ 𝑥 ∈ dom PsMet 𝐷 ∈ ( PsMet ‘ 𝑥 ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( 𝐷 ∈ ∪ ran PsMet ↔ ∃ 𝑥 ∈ dom PsMet 𝐷 ∈ ( PsMet ‘ 𝑥 ) ) |
24 |
19 23
|
sylibr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ ∪ ran PsMet ) |
25 |
|
ovexd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∈ V ) |
26 |
1 14 24 25
|
fvmptd2 |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |