Metamath Proof Explorer


Theorem metxmet

Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ismet2 ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) )
2 1 simplbi ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )