Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |