| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rzal | ⊢ ( ( Base ‘ 𝑀 )  =  ∅  →  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( Base ‘ 𝑀 )  =  ∅ )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 5 | 3 4 | ismgm | ⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( Base ‘ 𝑀 )  =  ∅ )  →  ( 𝑀  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 7 | 2 6 | mpbird | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( Base ‘ 𝑀 )  =  ∅ )  →  𝑀  ∈  Mgm ) |