Metamath Proof Explorer


Theorem mgmb1mgm1

Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020) (Revised by AV, 7-Feb-2020)

Ref Expression
Hypotheses mgmb1mgm1.b 𝐵 = ( Base ‘ 𝑀 )
mgmb1mgm1.p + = ( +g𝑀 )
Assertion mgmb1mgm1 ( ( 𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ + = { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ) )

Proof

Step Hyp Ref Expression
1 mgmb1mgm1.b 𝐵 = ( Base ‘ 𝑀 )
2 mgmb1mgm1.p + = ( +g𝑀 )
3 eqid ( +𝑓𝑀 ) = ( +𝑓𝑀 )
4 1 2 3 plusfeq ( + Fn ( 𝐵 × 𝐵 ) → ( +𝑓𝑀 ) = + )
5 1 3 mgmplusf ( 𝑀 ∈ Mgm → ( +𝑓𝑀 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
6 feq1 ( ( +𝑓𝑀 ) = + → ( ( +𝑓𝑀 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵+ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) )
7 5 6 syl5ib ( ( +𝑓𝑀 ) = + → ( 𝑀 ∈ Mgm → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) )
8 4 7 syl ( + Fn ( 𝐵 × 𝐵 ) → ( 𝑀 ∈ Mgm → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) )
9 8 impcom ( ( 𝑀 ∈ Mgm ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
10 9 3adant2 ( ( 𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
11 simp2 ( ( 𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn ( 𝐵 × 𝐵 ) ) → 𝑍𝐵 )
12 intopsn ( ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐵𝑍𝐵 ) → ( 𝐵 = { 𝑍 } ↔ + = { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ) )
13 10 11 12 syl2anc ( ( 𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ + = { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ) )