Step |
Hyp |
Ref |
Expression |
1 |
|
mgmb1mgm1.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
mgmb1mgm1.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( +𝑓 ‘ 𝑀 ) = ( +𝑓 ‘ 𝑀 ) |
4 |
1 2 3
|
plusfeq |
⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( +𝑓 ‘ 𝑀 ) = + ) |
5 |
1 3
|
mgmplusf |
⊢ ( 𝑀 ∈ Mgm → ( +𝑓 ‘ 𝑀 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
6 |
|
feq1 |
⊢ ( ( +𝑓 ‘ 𝑀 ) = + → ( ( +𝑓 ‘ 𝑀 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) ) |
7 |
5 6
|
syl5ib |
⊢ ( ( +𝑓 ‘ 𝑀 ) = + → ( 𝑀 ∈ Mgm → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) ) |
8 |
4 7
|
syl |
⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( 𝑀 ∈ Mgm → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) ) |
9 |
8
|
impcom |
⊢ ( ( 𝑀 ∈ Mgm ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
11 |
|
simp2 |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
12 |
|
intopsn |
⊢ ( ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |