| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmb1mgm1.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | mgmb1mgm1.p | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 3 |  | eqid | ⊢ ( +𝑓 ‘ 𝑀 )  =  ( +𝑓 ‘ 𝑀 ) | 
						
							| 4 | 1 2 3 | plusfeq | ⊢ (  +   Fn  ( 𝐵  ×  𝐵 )  →  ( +𝑓 ‘ 𝑀 )  =   +  ) | 
						
							| 5 | 1 3 | mgmplusf | ⊢ ( 𝑀  ∈  Mgm  →  ( +𝑓 ‘ 𝑀 ) : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 6 |  | feq1 | ⊢ ( ( +𝑓 ‘ 𝑀 )  =   +   →  ( ( +𝑓 ‘ 𝑀 ) : ( 𝐵  ×  𝐵 ) ⟶ 𝐵  ↔   +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) ) | 
						
							| 7 | 5 6 | imbitrid | ⊢ ( ( +𝑓 ‘ 𝑀 )  =   +   →  ( 𝑀  ∈  Mgm  →   +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ (  +   Fn  ( 𝐵  ×  𝐵 )  →  ( 𝑀  ∈  Mgm  →   +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) ) | 
						
							| 9 | 8 | impcom | ⊢ ( ( 𝑀  ∈  Mgm  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →   +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 10 | 9 | 3adant2 | ⊢ ( ( 𝑀  ∈  Mgm  ∧  𝑍  ∈  𝐵  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →   +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝑀  ∈  Mgm  ∧  𝑍  ∈  𝐵  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 12 |  | intopsn | ⊢ ( (  +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  =  { 𝑍 }  ↔   +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝑀  ∈  Mgm  ∧  𝑍  ∈  𝐵  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →  ( 𝐵  =  { 𝑍 }  ↔   +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) |