Metamath Proof Explorer


Theorem mgmcl

Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010) (Revised by AV, 13-Jan-2020)

Ref Expression
Hypotheses mgmcl.b 𝐵 = ( Base ‘ 𝑀 )
mgmcl.o = ( +g𝑀 )
Assertion mgmcl ( ( 𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mgmcl.b 𝐵 = ( Base ‘ 𝑀 )
2 mgmcl.o = ( +g𝑀 )
3 1 2 ismgm ( 𝑀 ∈ Mgm → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 ) )
4 3 ibi ( 𝑀 ∈ Mgm → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 )
5 ovrspc2v ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
6 5 expcom ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ) ∈ 𝐵 → ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 ) )
7 4 6 syl ( 𝑀 ∈ Mgm → ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 ) )
8 7 3impib ( ( 𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )