| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgmcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
mgmcl.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
| 3 |
1 2
|
ismgm |
⊢ ( 𝑀 ∈ Mgm → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 4 |
3
|
ibi |
⊢ ( 𝑀 ∈ Mgm → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) |
| 5 |
|
ovrspc2v |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) |
| 6 |
5
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝑀 ∈ Mgm → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) ) |
| 8 |
7
|
3impib |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝐵 ) |