| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgmhmrcl |
⊢ ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) → ( 𝑇 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ) |
| 2 |
1
|
simprd |
⊢ ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) → 𝑈 ∈ Mgm ) |
| 3 |
|
mgmhmrcl |
⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 4 |
3
|
simpld |
⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝑆 ∈ Mgm ) |
| 5 |
2 4
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 8 |
6 7
|
mgmhmf |
⊢ ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 10 |
9 6
|
mgmhmf |
⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 11 |
|
fco |
⊢ ( ( 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ∧ 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 12 |
8 10 11
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 15 |
9 13 14
|
mgmhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 16 |
15
|
3expb |
⊢ ( ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 17 |
16
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 18 |
17
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ) |
| 20 |
10
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 21 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 22 |
20 21
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 23 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 24 |
20 23
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
| 25 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 26 |
6 14 25
|
mgmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 27 |
19 22 24 26
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 28 |
18 27
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 29 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝑆 ∈ Mgm ) |
| 30 |
9 13
|
mgmcl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 31 |
30
|
3expb |
⊢ ( ( 𝑆 ∈ Mgm ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 32 |
29 31
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 33 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 34 |
20 32 33
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 35 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 36 |
20 21 35
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 37 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 38 |
20 23 37
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 39 |
36 38
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 40 |
28 34 39
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 41 |
40
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 42 |
12 41
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 43 |
9 7 13 25
|
ismgmhm |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MgmHom 𝑈 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ∧ ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 44 |
5 42 43
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MgmHom 𝑈 ) ) |