| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmhmf.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | mgmhmf.c | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 5 | 1 2 3 4 | ismgmhm | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  ↔  ( ( 𝑆  ∈  Mgm  ∧  𝑇  ∈  Mgm )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝑆  ∈  Mgm  ∧  𝑇  ∈  Mgm )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 7 | 5 6 | sylbi | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  →  𝐹 : 𝐵 ⟶ 𝐶 ) |