| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝐹  “  𝑋 )  ⊆  ran  𝐹  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑁 )  =  ( Base ‘ 𝑁 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mgmhmf | 
							⊢ ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							frnd | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ran  𝐹  ⊆  ( Base ‘ 𝑁 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							sstrid | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ⊆  ( Base ‘ 𝑁 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  ∈  ( 𝑀  MgmHom  𝑁 ) )  | 
						
						
							| 9 | 
							
								2
							 | 
							submgmss | 
							⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑀 )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sseldd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑧  ∈  ( Base ‘ 𝑀 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑥  ∈  𝑋 )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							sseldd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑥  ∈  ( Base ‘ 𝑀 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝑁 )  =  ( +g ‘ 𝑁 )  | 
						
						
							| 18 | 
							
								2 16 17
							 | 
							mgmhmlin | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑧  ∈  ( Base ‘ 𝑀 )  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 19 | 
							
								8 13 15 18
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 20 | 
							
								5
							 | 
							ffnd | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  𝐹  Fn  ( Base ‘ 𝑀 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  Fn  ( Base ‘ 𝑀 ) )  | 
						
						
							| 22 | 
							
								16
							 | 
							submgmcl | 
							⊢ ( ( 𝑋  ∈  ( SubMgm ‘ 𝑀 )  ∧  𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 )  | 
						
						
							| 23 | 
							
								22
							 | 
							3expb | 
							⊢ ( ( 𝑋  ∈  ( SubMgm ‘ 𝑀 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantll | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 )  | 
						
						
							| 25 | 
							
								
							 | 
							fnfvima | 
							⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 )  ∧  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 26 | 
							
								21 11 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 27 | 
							
								19 26
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  𝑧  ∈  𝑋 )  →  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							eleq1d | 
							⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralima | 
							⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 33 | 
							
								20 10 32
							 | 
							syl2anc | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  𝑧  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 35 | 
							
								29 34
							 | 
							mpbird | 
							⊢ ( ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  ∧  𝑧  ∈  𝑋 )  →  ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralrimiva | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralima | 
							⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 41 | 
							
								20 10 40
							 | 
							syl2anc | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) )  | 
						
						
							| 42 | 
							
								36 41
							 | 
							mpbird | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							mgmhmrcl | 
							⊢ ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  →  ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							simprd | 
							⊢ ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  →  𝑁  ∈  Mgm )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  𝑁  ∈  Mgm )  | 
						
						
							| 46 | 
							
								3 17
							 | 
							issubmgm | 
							⊢ ( 𝑁  ∈  Mgm  →  ( ( 𝐹  “  𝑋 )  ∈  ( SubMgm ‘ 𝑁 )  ↔  ( ( 𝐹  “  𝑋 )  ⊆  ( Base ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ( ( 𝐹  “  𝑋 )  ∈  ( SubMgm ‘ 𝑁 )  ↔  ( ( 𝐹  “  𝑋 )  ⊆  ( Base ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) )  | 
						
						
							| 48 | 
							
								7 42 47
							 | 
							mpbir2and | 
							⊢ ( ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ∈  ( SubMgm ‘ 𝑁 ) )  |