| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmhmpropd.a | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐽 ) ) | 
						
							| 2 |  | mgmhmpropd.b | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝐾 ) ) | 
						
							| 3 |  | mgmhmpropd.c | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 4 |  | mgmhmpropd.d | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝑀 ) ) | 
						
							| 5 |  | mgmhmpropd.0 | ⊢ ( 𝜑  →  𝐵  ≠  ∅ ) | 
						
							| 6 |  | mgmhmpropd.C | ⊢ ( 𝜑  →  𝐶  ≠  ∅ ) | 
						
							| 7 |  | mgmhmpropd.e | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 8 |  | mgmhmpropd.f | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 9 | 7 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) | 
						
							| 10 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) | 
						
							| 11 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 12 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  𝑦  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 13 | 11 12 | anim12dan | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ 𝑥 )  ∈  𝐶  ∧  ( 𝑓 ‘ 𝑦 )  ∈  𝐶 ) ) | 
						
							| 14 | 8 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ↔  ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 20 | 18 19 | eqeq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 )  ↔  ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 21 | 17 20 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ↔  ∀ 𝑤  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 22 | 14 21 | sylib | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑥 )  →  ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 )  ↔  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  ↔  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 29 | 25 28 | rspc2va | ⊢ ( ( ( ( 𝑓 ‘ 𝑥 )  ∈  𝐶  ∧  ( 𝑓 ‘ 𝑦 )  ∈  𝐶 )  ∧  ∀ 𝑤  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 30 | 13 22 29 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 31 | 30 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 32 | 10 31 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 33 | 32 | 2ralbidva | ⊢ ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 34 | 33 | adantrl | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 35 |  | raleq | ⊢ ( 𝐵  =  ( Base ‘ 𝐽 )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 36 | 35 | raleqbi1dv | ⊢ ( 𝐵  =  ( Base ‘ 𝐽 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 37 | 1 36 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 39 |  | raleq | ⊢ ( 𝐵  =  ( Base ‘ 𝐿 )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 40 | 39 | raleqbi1dv | ⊢ ( 𝐵  =  ( Base ‘ 𝐿 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 3 40 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 43 | 34 38 42 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 44 | 43 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 45 | 44 | pm5.32da | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  →  ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 46 | 1 2 | feq23d | ⊢ ( 𝜑  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 48 | 47 | anbi1d | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  →  ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 49 | 3 4 | feq23d | ⊢ ( 𝜑  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) | 
						
							| 51 | 50 | anbi1d | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  →  ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 52 | 45 48 51 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm ) )  →  ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 53 | 52 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 54 | 1 3 5 7 | mgmpropd | ⊢ ( 𝜑  →  ( 𝐽  ∈  Mgm  ↔  𝐿  ∈  Mgm ) ) | 
						
							| 55 | 2 4 6 8 | mgmpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Mgm  ↔  𝑀  ∈  Mgm ) ) | 
						
							| 56 | 54 55 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ↔  ( 𝐿  ∈  Mgm  ∧  𝑀  ∈  Mgm ) ) ) | 
						
							| 57 | 56 | anbi1d | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ( ( 𝐿  ∈  Mgm  ∧  𝑀  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 58 | 53 57 | bitrd | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ( ( 𝐿  ∈  Mgm  ∧  𝑀  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 59 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 60 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 61 |  | eqid | ⊢ ( +g ‘ 𝐽 )  =  ( +g ‘ 𝐽 ) | 
						
							| 62 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 63 | 59 60 61 62 | ismgmhm | ⊢ ( 𝑓  ∈  ( 𝐽  MgmHom  𝐾 )  ↔  ( ( 𝐽  ∈  Mgm  ∧  𝐾  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 64 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 65 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 66 |  | eqid | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 ) | 
						
							| 67 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 68 | 64 65 66 67 | ismgmhm | ⊢ ( 𝑓  ∈  ( 𝐿  MgmHom  𝑀 )  ↔  ( ( 𝐿  ∈  Mgm  ∧  𝑀  ∈  Mgm )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 69 | 58 63 68 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐽  MgmHom  𝐾 )  ↔  𝑓  ∈  ( 𝐿  MgmHom  𝑀 ) ) ) | 
						
							| 70 | 69 | eqrdv | ⊢ ( 𝜑  →  ( 𝐽  MgmHom  𝐾 )  =  ( 𝐿  MgmHom  𝑀 ) ) |