Metamath Proof Explorer


Theorem mgmidcl

Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b 𝐵 = ( Base ‘ 𝐺 )
ismgmid.o 0 = ( 0g𝐺 )
ismgmid.p + = ( +g𝐺 )
mgmidcl.e ( 𝜑 → ∃ 𝑒𝐵𝑥𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) )
Assertion mgmidcl ( 𝜑0𝐵 )

Proof

Step Hyp Ref Expression
1 ismgmid.b 𝐵 = ( Base ‘ 𝐺 )
2 ismgmid.o 0 = ( 0g𝐺 )
3 ismgmid.p + = ( +g𝐺 )
4 mgmidcl.e ( 𝜑 → ∃ 𝑒𝐵𝑥𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) )
5 eqid 0 = 0
6 1 2 3 4 ismgmid ( 𝜑 → ( ( 0𝐵 ∧ ∀ 𝑥𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ↔ 0 = 0 ) )
7 5 6 mpbiri ( 𝜑 → ( 0𝐵 ∧ ∀ 𝑥𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) )
8 7 simpld ( 𝜑0𝐵 )