Metamath Proof Explorer
Description: The identity element of a magma, if it exists, belongs to the base
set. (Contributed by Mario Carneiro, 27-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ismgmid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
ismgmid.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
|
|
ismgmid.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
mgmidcl.e |
⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
|
Assertion |
mgmidcl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ismgmid.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
ismgmid.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
mgmidcl.e |
⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
5 |
|
eqid |
⊢ 0 = 0 |
6 |
1 2 3 4
|
ismgmid |
⊢ ( 𝜑 → ( ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ↔ 0 = 0 ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝜑 → ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |