| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismgmid.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismgmid.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | ismgmid.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | mgmidcl.e | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑒  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑒 )  =  𝑥 ) ) | 
						
							| 5 |  | eqid | ⊢  0   =   0 | 
						
							| 6 | 1 2 3 4 | ismgmid | ⊢ ( 𝜑  →  ( (  0   ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) )  ↔   0   =   0  ) ) | 
						
							| 7 | 5 6 | mpbiri | ⊢ ( 𝜑  →  (  0   ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) ) | 
						
							| 8 | 7 | simprd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  (  0   +  𝑥 )  =  (  0   +  𝑋 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥  =  𝑋  →  ( (  0   +  𝑥 )  =  𝑥  ↔  (  0   +  𝑋 )  =  𝑋 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +   0  )  =  ( 𝑋  +   0  ) ) | 
						
							| 13 | 12 10 | eqeq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  +   0  )  =  𝑥  ↔  ( 𝑋  +   0  )  =  𝑋 ) ) | 
						
							| 14 | 11 13 | anbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 )  ↔  ( (  0   +  𝑋 )  =  𝑋  ∧  ( 𝑋  +   0  )  =  𝑋 ) ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 )  ∧  𝑋  ∈  𝐵 )  →  ( (  0   +  𝑋 )  =  𝑋  ∧  ( 𝑋  +   0  )  =  𝑋 ) ) | 
						
							| 16 | 8 15 | sylan | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐵 )  →  ( (  0   +  𝑋 )  =  𝑋  ∧  ( 𝑋  +   0  )  =  𝑋 ) ) |