| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmplusf.1 | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | mgmplusf.2 | ⊢  ⨣   =  ( +𝑓 ‘ 𝑀 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 4 | 1 3 | mgmcl | ⊢ ( ( 𝑀  ∈  Mgm  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 5 | 4 | 3expb | ⊢ ( ( 𝑀  ∈  Mgm  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 6 | 5 | ralrimivva | ⊢ ( 𝑀  ∈  Mgm  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 7 | 1 3 2 | plusffval | ⊢  ⨣   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 8 | 7 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵  ↔   ⨣  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 9 | 6 8 | sylib | ⊢ ( 𝑀  ∈  Mgm  →   ⨣  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) |