Metamath Proof Explorer


Theorem mgmplusf

Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015) (Revisd by AV, 28-Jan-2020.)

Ref Expression
Hypotheses mgmplusf.1 𝐵 = ( Base ‘ 𝑀 )
mgmplusf.2 = ( +𝑓𝑀 )
Assertion mgmplusf ( 𝑀 ∈ Mgm → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 mgmplusf.1 𝐵 = ( Base ‘ 𝑀 )
2 mgmplusf.2 = ( +𝑓𝑀 )
3 eqid ( +g𝑀 ) = ( +g𝑀 )
4 1 3 mgmcl ( ( 𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ 𝐵 )
5 4 3expb ( ( 𝑀 ∈ Mgm ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ 𝐵 )
6 5 ralrimivva ( 𝑀 ∈ Mgm → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ 𝐵 )
7 1 3 2 plusffval = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 ( +g𝑀 ) 𝑦 ) )
8 7 fmpo ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ 𝐵 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
9 6 8 sylib ( 𝑀 ∈ Mgm → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )