Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpbas.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| mgpbas.2 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | mgpbas.2 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 4 | 1 3 | mgpval | ⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
| 5 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 6 | basendxnplusgndx | ⊢ ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 7 | 4 5 6 | setsplusg | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 8 | 2 7 | eqtri | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |