Step |
Hyp |
Ref |
Expression |
1 |
|
mgpbas.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
mgplem.2 |
⊢ 𝐸 = Slot 𝑁 |
3 |
|
mgplem.3 |
⊢ 𝑁 ∈ ℕ |
4 |
|
mgplem.4 |
⊢ 𝑁 ≠ 2 |
5 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
6 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
7 |
|
plusgndx |
⊢ ( +g ‘ ndx ) = 2 |
8 |
6 7
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( +g ‘ ndx ) ↔ 𝑁 ≠ 2 ) |
9 |
4 8
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( +g ‘ ndx ) |
10 |
5 9
|
setsnid |
⊢ ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
1 11
|
mgpval |
⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
13 |
12
|
fveq2i |
⊢ ( 𝐸 ‘ 𝑀 ) = ( 𝐸 ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
14 |
10 13
|
eqtr4i |
⊢ ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑀 ) |