Step |
Hyp |
Ref |
Expression |
1 |
|
mgpval.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
mgpval.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
2
|
fvexi |
⊢ · ∈ V |
4 |
|
plusgid |
⊢ +g = Slot ( +g ‘ ndx ) |
5 |
4
|
setsid |
⊢ ( ( 𝑅 ∈ V ∧ · ∈ V ) → · = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) ) |
6 |
3 5
|
mpan2 |
⊢ ( 𝑅 ∈ V → · = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) ) |
7 |
1 2
|
mgpval |
⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |
8 |
7
|
fveq2i |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
9 |
6 8
|
eqtr4di |
⊢ ( 𝑅 ∈ V → · = ( +g ‘ 𝑀 ) ) |
10 |
4
|
str0 |
⊢ ∅ = ( +g ‘ ∅ ) |
11 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( .r ‘ 𝑅 ) = ∅ ) |
12 |
2 11
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → · = ∅ ) |
13 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) |
14 |
1 13
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝑀 = ∅ ) |
15 |
14
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ ∅ ) ) |
16 |
10 12 15
|
3eqtr4a |
⊢ ( ¬ 𝑅 ∈ V → · = ( +g ‘ 𝑀 ) ) |
17 |
9 16
|
pm2.61i |
⊢ · = ( +g ‘ 𝑀 ) |