Step |
Hyp |
Ref |
Expression |
1 |
|
mgpress.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
mgpress.2 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( Base ‘ 𝑅 ) ⊆ 𝐴 ) |
4 |
2
|
fvexi |
⊢ 𝑀 ∈ V |
5 |
4
|
a1i |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑀 ∈ V ) |
6 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝐴 ∈ 𝑊 ) |
7 |
|
eqid |
⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
2 8
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
10 |
7 9
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = 𝑀 ) |
11 |
3 5 6 10
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = 𝑀 ) |
12 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑅 ∈ 𝑉 ) |
13 |
1 8
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝑆 = 𝑅 ) |
14 |
3 12 6 13
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑆 = 𝑅 ) |
15 |
14
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑅 ) ) |
16 |
2 11 15
|
3eqtr4a |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
18 |
2 17
|
mgpval |
⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
19 |
18
|
oveq1i |
⊢ ( 𝑀 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) |
20 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) |
21 |
4
|
a1i |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑀 ∈ V ) |
22 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝐴 ∈ 𝑊 ) |
23 |
7 9
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = ( 𝑀 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
24 |
20 21 22 23
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = ( 𝑀 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
26 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
27 |
25 26
|
mgpval |
⊢ ( mulGrp ‘ 𝑆 ) = ( 𝑆 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 ) |
28 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑅 ∈ 𝑉 ) |
29 |
1 8
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝑆 = ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
30 |
20 28 22 29
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑆 = ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
31 |
1 17
|
ressmulr |
⊢ ( 𝐴 ∈ 𝑊 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
32 |
31
|
eqcomd |
⊢ ( 𝐴 ∈ 𝑊 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑅 ) ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑅 ) ) |
34 |
33
|
opeq2d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 = 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
35 |
30 34
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑆 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
36 |
27 35
|
eqtrid |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( mulGrp ‘ 𝑆 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
37 |
|
1ne2 |
⊢ 1 ≠ 2 |
38 |
37
|
necomi |
⊢ 2 ≠ 1 |
39 |
|
plusgndx |
⊢ ( +g ‘ ndx ) = 2 |
40 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
41 |
39 40
|
neeq12i |
⊢ ( ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ 2 ≠ 1 ) |
42 |
38 41
|
mpbir |
⊢ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) |
43 |
|
fvex |
⊢ ( .r ‘ 𝑅 ) ∈ V |
44 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
45 |
44
|
inex2 |
⊢ ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) ∈ V |
46 |
|
fvex |
⊢ ( +g ‘ ndx ) ∈ V |
47 |
|
fvex |
⊢ ( Base ‘ ndx ) ∈ V |
48 |
46 47
|
setscom |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( ( .r ‘ 𝑅 ) ∈ V ∧ ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) ∈ V ) ) → ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
49 |
43 45 48
|
mpanr12 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) ) → ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
50 |
28 42 49
|
sylancl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
51 |
36 50
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( mulGrp ‘ 𝑆 ) = ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
52 |
19 24 51
|
3eqtr4a |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
53 |
16 52
|
pm2.61dan |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |