Metamath Proof Explorer
Description: Topology component of the multiplication group. (Contributed by Mario
Carneiro, 5-Oct-2015)
|
|
Ref |
Expression |
|
Hypothesis |
mgpbas.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
|
Assertion |
mgptset |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑀 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mgpbas.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
df-tset |
⊢ TopSet = Slot 9 |
3 |
|
9nn |
⊢ 9 ∈ ℕ |
4 |
|
2re |
⊢ 2 ∈ ℝ |
5 |
|
2lt9 |
⊢ 2 < 9 |
6 |
4 5
|
gtneii |
⊢ 9 ≠ 2 |
7 |
1 2 3 6
|
mgplem |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑀 ) |